Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1004833, 2022.
Article in English | MEDLINE | ID: mdl-36299778

ABSTRACT

Nutrient deficiency in wild plant species, including quinoa (Chenopodium quinoa Willd), can be overcome by applying mineral-solubilizing bacteria. Quinoa is a gluten-free, nutritious food crop with unique protein content. The present study aimed to characterize mineral-solubilizing rhizobacterial strains and to evaluate their plant growth-promoting potential in quinoa seedlings. More than sixty rhizobacterial strains were isolated from the quinoa rhizosphere and found eighteen strains to be strong phosphate solubilizers. Most of these bacterial strains showed zinc solubilization, and more than 80% of strains could solubilize manganese. The selected strains were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene sequencing. Mainly, these strains showed the production of organic acids, including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble phosphorus amended broth. All strains showed production of gluconic acids, while half of the strains could produce malic, ascorbic, lactic, and oxalic acids. These strains demonstrated the production of indole-3-acetic acid in the presence as well as in the absence of L-tryptophan. The bacterial strains also demonstrated their ability to promote growth and yield attributes, including shoot length, root length, leave numbers, root and shoot dry biomass, spike length, and spikes numbers of quinoa in pots and field trials. Increased physiological attributes, including relative humidity, quantum flux, diffusive resistance, and transpiration rate, were observed due to inoculation with mineral solubilizing bacterial strains under field conditions. P. lucknowensis Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed promising results to promote growth, yield, and physiological attributes. The multi-traits characteristics and plant growth-promoting ability in the tested bacterial strains could provide an opportunity for formulating biofertilizers that could promote wild quinoa growth and physiology.

2.
Int J Immunopathol Pharmacol ; 34: 2058738420966083, 2020.
Article in English | MEDLINE | ID: mdl-33125856

ABSTRACT

Polycystic kidneys disease refers to cyst(s) formation in kidneys with severe consequences of end stage renal disease thus have higher mortality. It is a common genetic disease occurring either as autosomal dominant polycystic kidney (ADPKD) or autosomal recessive polycystic kidney disease (ARPKD) with prevalence rates of 1/1000 and 1/40,000 respectively. Dominant forms presenting in later (>30) while recessive in earlier ages (infancy) and affecting both sexes and almost all race. The patient experiences many renal as well as extra-renal manifestations with marked hypertension and cyst formation in other organs predominantly in liver. Due to genetic basis, positive family history is considered as major risk factor. Ultrasonography remains the main stay of diagnosis along with family history, by indicating increased renal size and architectural modifications. Initially disease remains asymptomatic, later on symptomatic treatment is suggested with surgical interventions like cyst decortications or drainage. Dialysis proved to be beneficial in end stage renal disease. However renal transplantation is the treatment of choice.


Subject(s)
Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Recessive/epidemiology , Adult , Aged , Disease Progression , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pakistan/epidemiology , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/therapy , Polycystic Kidney, Autosomal Recessive/diagnosis , Polycystic Kidney, Autosomal Recessive/genetics , Polycystic Kidney, Autosomal Recessive/therapy , Prevalence , Prognosis , Renal Replacement Therapy , Risk Assessment , Risk Factors , TRPP Cation Channels/genetics
3.
Environ Monit Assess ; 187(2): 19, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25626568

ABSTRACT

The adsorption of cadmium (Cd), chromium (Cr), and lead (Pb), widely detected in wastewater, by unmodified and modified banana stalks, corn cob, and sunflower achene was explored. The three agricultural wastes were chemically modified with sodium hydroxide (NaOH), in combination with nitric acid (HNO3) and sulfuric acid (H2SO4), in order to improve their adsorptive binding capacity. The experiments were conducted as a function of contact time and initial metal ion concentrations. Of the three waste materials, corn cob had the highest adsorptive capacity for Pb than Cr and Cd. The NaOH-modified substrates had higher adsorptive capacity than the acid modified samples. The chemical treatment invariably increased the adsorption capacity between 10 and 100 %. The Langmuir maximum sorption capacity (q m) of Pb was highest (21-60 mg g(-1) of banana, 30-57 mg g(-1) of corn cob, and 23-28 mg g(-1) of sunflower achene) and that of Cd was least (4-7 mg g(-1) of banana, 14-20 mg g(-1) of corn cob, and 11-16 mg g(-1) of sunflower achene). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. The results demonstrate that the agricultural waste materials used in this study could be used to remediate water polluted with heavy metals.


Subject(s)
Agriculture , Metals, Heavy/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Cadmium/analysis , Cadmium/chemistry , Chromium/analysis , Chromium/chemistry , Hydrogen-Ion Concentration , Lead/analysis , Lead/chemistry , Metals, Heavy/chemistry , Waste Products , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...