Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(11): e2217946120, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36877845

ABSTRACT

Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high latitudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O2, N2, and SF6. Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N2/Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N2 from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.

2.
Sci Adv ; 8(46): eabq5434, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383653

ABSTRACT

Using new and published marine fossil radiocarbon (14C/C) measurements, a tracer uniquely sensitive to circulation and air-sea gas exchange, we establish several benchmarks for Atlantic, Southern, and Pacific deep-sea circulation and ventilation since the last ice age. We find the most 14C-depleted water in glacial Pacific bottom depths, rather than the mid-depths as they are today, which is best explained by a slowdown in glacial deep-sea overturning in addition to a "flipped" glacial Pacific overturning configuration. These observations cannot be produced by changes in air-sea gas exchange alone, and they underscore the major role for changes in the overturning circulation for glacial deep-sea carbon storage in the vast Pacific abyss and the concomitant drawdown of atmospheric CO2.

3.
iScience ; 24(5): 102418, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113806

ABSTRACT

The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.

4.
Nat Commun ; 8(1): 2018, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29209057

ABSTRACT

The original version of this Article contained errors in Fig. 2b and Table 2. In Fig. 2b, the white circle labels were incorrectly positioned as they referred to scenarios that were used in an earlier version of the Article. In Table 2, the following three sentences were removed from the legend 'The last two calculations are discussed in the "Methods". The first assumes that all dissolved plus the ≈0.3 nmol kg-1 of particulate iron (measured in the eastern equatorial Pacific30) is bioavailable. The last calculation assumes EUC dissolved iron concentrations from 140° W'. These errors have now been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 8(1): 1100, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29062103

ABSTRACT

Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.


Subject(s)
Iron/analysis , Phytoplankton/metabolism , Seawater/chemistry , Ecosystem , Iron/metabolism , Nitrates/analysis , Nitrates/metabolism , Pacific Ocean , Phytoplankton/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...