Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(28): 18572-18583, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38941562

ABSTRACT

Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel. Herein, we study the effects of confined synthesis of Zr-based UiO-66 MOF on the ion transport properties of single bullet-shaped poly(ethylene terephthalate) (PET) nanochannels. We have found that emerging textural properties from the MOF phase play a determinant role in controlling ionic transport through the nanochannel. We demonstrate that a transition from ion current saturation regimes to diode-like regimes can be obtained by employing different synthetic approaches, namely, counterdiffusion synthesis, where MOF precursors are kept separate and forced to diffuse through the nanochannel, and one-pot synthesis, where both precursors are placed at both ends of the channel. Also, by considering the dependence of the charge state of the UiO-66 MOF on the protonation degree, pH changes offered a mechanism to tune the iontronic output (and selectivity) among different regimes, including anion-driven rectification, cation-driven rectification, ion current saturation, and ohmic behavior. Furthermore, Poisson-Nernst-Planck (PNP) simulations were employed to rationalize the different iontronic outputs observed experimentally for membranes modified by different methods. Our results demonstrate a straightforward tool to synthesize MOF-based SSN membranes with tunable ion transport regimes.

2.
Chem Mater ; 36(11): 5814-5825, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38883435

ABSTRACT

Metal-organic frameworks (MOFs) have settled in the scientific community over the last decades as versatile materials with several applications. Among those, zeolitic imidazolate framework 8 (ZIF-8) is a well-known MOF that has been applied in various and diverse fields, from drug-delivery platforms to microelectronics. However, the complex role played by the reaction parameters in controlling the size and morphology of ZIF-8 particles is still not fully understood. Even further, many individual reports propose different nucleation and growth mechanisms for ZIF-8, thus creating a fragmented view for the behavior of the system. To provide a unified view, we have generated a comprehensive data set of synthetic conditions and their final outputs and applied machine learning techniques to analyze the data. Our approach has enabled us to identify the nucleation and growth mechanisms operating for ZIF-8 in a given sub-space of synthetic variables space (chemical space) and to reveal their impact on important features such as final particle size and morphology. By doing so, we draw connections and establish a hierarchy for the role of each synthetic variable and provide with rule of thumb for attaining control on the final particle size. Our results provide a unified roadmap for the nucleation and growth mechanisms of ZIF-8 in agreement with mainstream reported trends, which can guide the rational design of ZIF-8 particles which ultimately determine their suitability for any given targeted application. Altogether, our work represents a step forward in seeking control of the properties of MOFs through a deeper understanding of the rationale behind the synthesis procedures employed for their synthesis.

3.
Sensors (Basel) ; 23(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37050513

ABSTRACT

We hereby present a novel "grafting-to"-like approach for the covalent attachment of plasmonic nanoparticles (PNPs) onto whispering gallery mode (WGM) silica microresonators. Mechanically stable optoplasmonic microresonators were employed for sensing single-particle and single-molecule interactions in real time, allowing for the differentiation between binding and non-binding events. An approximated value of the activation energy for the silanization reaction occurring during the "grafting-to" approach was obtained using the Arrhenius equation; the results agree with available values from both bulk experiments and ab initio calculations. The "grafting-to" method combined with the functionalization of the plasmonic nanoparticle with appropriate receptors, such as single-stranded DNA, provides a robust platform for probing specific single-molecule interactions under biologically relevant conditions.

4.
Adv Mater ; 34(51): e2207339, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36239253

ABSTRACT

The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.

5.
Light Sci Appl ; 10(1): 42, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637696

ABSTRACT

Lasers are the pillars of modern optics and sensing. Microlasers based on whispering-gallery modes (WGMs) are miniature in size and have excellent lasing characteristics suitable for biosensing. WGM lasers have been used for label-free detection of single virus particles, detection of molecular electrostatic changes at biointerfaces, and barcode-type live-cell tagging and tracking. The most recent advances in biosensing with WGM microlasers are described in this review. We cover the basic concepts of WGM resonators, the integration of gain media into various active WGM sensors and devices, and the cutting-edge advances in photonic devices for micro- and nanoprobing of biological samples that can be integrated with WGM lasers.

6.
Chemistry ; 26(54): 12388-12396, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32672356

ABSTRACT

This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.

7.
Glob Chall ; 4(2): 1900076, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32042446

ABSTRACT

Due to its deleterious effects on health, development of new methods for detection and removal of pesticide residues in primary and derived agricultural products is a research topic of great importance. Among them, imazalil (IMZ) is a widely used post-harvest fungicide with good performances in general, and is particularly applied to prevent green mold in citrus fruits. In this work, a composite film for the impedimetric sensing of IMZ built from metal-organic framework nanocrystallites homogeneously distributed on a conductive poly(3,4-ethylene dioxythiophene) (PEDOT) layer is presented. The as-synthetized thin films are produced via spin-coating over poly(ethylene terephtalate (PET) substrate following a straightforward, cost-effective, single-step procedure. By means of impedance spectroscopy, electric transport properties of the films are studied, and high sensitivity towards IMZ concentration in the range of 15 ppb to 1 ppm is demonstrated (featuring 1.6 and 4.2 ppb limit of detection, when using signal modulus and phase, respectively). The sensing platform hereby presented could be used for the construction of portable, miniaturized, and ultrasensitive devices, suitable for pesticide detection in food, wastewater effluents, or the assessment of drinking-water quality.

8.
RSC Adv ; 10(5): 2453-2461, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496105

ABSTRACT

Composite materials featuring a synergic combination of interesting properties such as stimuli responsiveness and tailored porosity are highly appealing due to their multiple possible applications. We hereby present an example which brings together such features by using poly(N-isopropyl-acrylamide)-derived thermo-responsive microgels and Zn-based Metal Organic Framework (MOF) ZIF-8, capable of selective adsorption. Such a composite was obtained by including methacrylic acid as a co-monomer in the microgel, in order to position carboxylic acid moieties within the polymeric matrix, which via preconcentration of MOF precursors would trigger confined heterogeneous nucleation. The highly integrated composite obtained features thermoresponsivity and permanent porosity. Methylene blue adsorption/desorption experiments were performed, revealing a dramatic enhancement of its cargo capacity together with an increased release efficiency.

9.
ACS Omega ; 4(1): 842-848, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459362

ABSTRACT

A strategy toward the integration of highly functional microporous materials, such as metal-organic frameworks (MOFs), in composites via biochemical recognition interactions is presented. Postsynthetic modification of zeolitic-imidazolate framework-8 MOF nanocrystals with a maltose-exposing biocompatible surfactant (the so-called "Glyco-MOFs") was performed to confer affinity toward lectin protein concanavalin A. The addition of small amounts of concanavalin A to the colloidal Glyco-MOF dispersion triggers the aggregation of these units into self-limited size supramolecular architectures directed by specific sugar-lectin binding interactions.

10.
RSC Adv ; 9(33): 19226-19235, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-35516879

ABSTRACT

A polymeric photosensitizer based on poly(allylamine hydrochloride) (PAH) and rose Bengal (RB) was synthesized. The modified polycation PAH-RB was demonstrated to be suitable for construction of microcapsules via a layer-by-layer (LbL) assembly technique, using sodium poly(styrene sulfonate) (PSS) as counter-polyelectrolyte and CaCO3 microcrystals as templates. After CaCO3 core removal, a stable suspension of hollow microcapsules with shells incorporating RB (HM-RB) was obtained. The spectroscopic and photophysical behavior of both PAH-RB and HM-RB in aqueous environments were studied and described in terms of dye-dye interactions and dye hydrophobicity. Only HM-RB was able to generate singlet molecular oxygen with similar efficiency to free RB in air-saturated solutions upon green light irradiation. In order to explore possible practical applications as a supramolecular photosensitizer, experiments of HM-RB irradiation in the presence of chemically and biologically relevant target molecules were carried out. It was observed that is possible to use visible light to initiate the photooxidation of biological compounds in water, with many interesting advantages compared to low-molecular-weight photosensitizers such as an enhancement of the photosensitizing effect, due to a significant reduction of dye-dye interaction, or improved reuse given the straightforward size-based separation from the reaction mixture without loss of efficiency.

11.
J Phys Chem A ; 123(5): 1100-1109, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30452265

ABSTRACT

Metal-organic framework (MOF) thin films are promising materials for multiple technological applications, such as chemical sensing. However, one potential limitation for their widespread use in different settings is their stability in aqueous environments. In the case of ZIF-8 (zeolitic imidazolate framework) thin films, their stability in aqueous media is currently a matter of debate. Here, we show that optical waveguide spectroscopy (OWS), in combination with surface plasmon resonance (SPR) spectroscopy, offers a convenient way for answering intriguing questions related to the stability of MOF thin films in aqueous solutions and, eventually provide a tool for assessing changes in MOF layers under different environmental conditions. Our experiments relied on the use of ZIF-8 thin films grown on surface-modified gold substrates, as optical waveguides. We have found a linear thickness increase after each growing cycle and observed that the growing characteristics are strongly influenced by the nature of the primer layer. One of our findings is that substrate surface modification with a 3-mercapto-1-propanesulfonate (MPSA) primer layer is critical to achieve ZIF-8 layers that can effectively act as optical waveguides. We observed that ZIF-8 films are structurally stable upon exposure to pure water and 50 mM NaCl solutions but they exhibit a slight swelling and an increase in porosity probably due to the permeation of the solvent in the intergrain mesoporous cavities. However, OWS revealed that exposure of ZIF-8 thin films to phosphate-buffered saline solutions (pH 8) promotes significant film degradation. This poses an important question as to the prospective use of ZIF-8 materials in biologically relevant applications. In addition, it was demonstrated that postsynthetic polyelectrolyte modification of ZIF-8 films has no detrimental effects on the structural stability of the films.

12.
Langmuir ; 34(1): 425-431, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29228770

ABSTRACT

We present experimental results demonstrating the suitability of polyelectrolyte capping as a simple and straightforward procedure to modify hydrophilic/hydrophobic character of porous films, thus allowing additional control on transport properties. In particular, we synthesized ZIF-8 metal organic framework (MOF) films, an archetypal hydrophobic zeolitic imidazolate framework, constituted by Zn2+ ions tetrahedrally coordinated with bidentate 2-methylimidazolate organic linker, and poly(4-styrenesulfonic acid) as capping agent (PSS). MOF films were synthesized via sequential one pot (SOP) steps over conductive substrates conveniently modified with primer agents known to enhance heterogeneous nucleation, followed by dip-coating with PSS aqueous solutions. Crystallinity, morphology, and chemical composition of ZIF-8 films were confirmed with traditional methods. Continuous electron density depth profile obtained with synchrotron light X-ray reflectivity (XRR) technique, suggest that PSS capped-films do not adopt segregated configurations in which PSS remains surface-confined. This affects functional properties conferred by PSS capping, which were assessed using cyclic voltammetry with both positively and negatively charged redox probe molecules. Furthermore, taking advantage of the control attained, we successfully carried in situ synthesis of film-hosted d-block metal nanoparticles (Au and Pt-NPT@5x-ZIF-8+PSS) via direct aqueous chemical reduction of precursors (diffusion-reaction approach).

13.
Photochem Photobiol ; 94(1): 36-51, 2018 01.
Article in English | MEDLINE | ID: mdl-28741707

ABSTRACT

In the present work, we have synthesized and fully characterized the photophysical and photochemical properties of a selected group of N-methyl-ß-carboline derivatives (9-methyl-ß-carbolines and iodine salts of 2-methyl- and 2,9-dimethyl-ß-carbolinium) in aqueous solutions, in the pH range 4.0-14.5. Moreover, despite the quite extensive studies reported in the literature regarding the overall photophysical behavior of N-unsubstituted ßCs, this work constitutes the first full and unambiguous characterization of anionic species of N-unsubstituted ßCs (norharmane, harmane and harmine), present in aqueous solution under highly alkaline conditions (pH > 13.0). Acid dissociation constants (Ka ), thermal stabilities, room temperature UV-visible absorption and fluorescence emission and excitation spectra, fluorescence quantum yields (ФF ) and fluorescence lifetimes (τF ), as well as quantum yields of singlet oxygen production (Ð¤Δ ) have been measured for all the studied compounds. Furthermore, for the first time to our knowledge, chemometric techniques (MCR-ALS and PARAFAC) were applied on these systems, providing relevant information about the equilibria and species involved. The impact of all the foregoing observations on the biological role, as well as the potential biotechnological applications of these compounds, is discussed.

14.
J Chem Phys ; 143(18): 184701, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26567674

ABSTRACT

The bistable NH3 + O2 reaction over a Rh(110) surface was explored in the pressure range 10(-6)-10(-3) mbar and in the temperature range 300-900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

15.
Phys Chem Chem Phys ; 17(19): 12462-5, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25908554

ABSTRACT

We report on interactions of cell free double-stranded DNA (dsDNA) with a selected subgroup of Microporous Coordination Polymers (MCPs). In particular, we have studied the influence of different metal ion constituents and chemically modified linkers using a set of five benzene carboxylate-based MCPs. Our results suggest that the DNA moiety can be structurally modified in two different ways: by direct MCPs-dsDNA interaction and/or through photosensitized processes. The extent of the observed damage was found to be strongly dependent on the charge density of the material. The potential use of the MCPs tested as inert carriers of photosensitizers was demonstrated by analyzing the interaction between dsDNA and harmine-loaded Cr-based materials, both in the absence of light and upon UVA irradiation.


Subject(s)
DNA Damage , DNA/chemistry , DNA/genetics , Electrons , Polymers/chemistry , Polymers/pharmacology , Models, Molecular , Molecular Conformation , Porosity
16.
J Chem Phys ; 141(21): 214707, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481161

ABSTRACT

By means of photoemission electron microscopy as spatially resolving method, the effect of high coverages of coadsorbed potassium (0.16 ≤ θ(K) ≤ 0.21) on the dynamical behavior of the H2 + O2 reaction over a Rh(110) surface was investigated. We observe that the originally bistable system is transformed into an excitable system as evidenced by the formation of target patterns and spiral waves. At K coverages close to saturation (θ(K) ≈ 0.21) mass transport of potassium with pulses is seen.

17.
ACS Appl Mater Interfaces ; 5(18): 8833-40, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24020748

ABSTRACT

Platinum nanoparticles of 3 nm diameter were included in mesoporous silica thin films by controlling the mesopore surface charge with a short polymer brush. This metal-polymer-mesopore nanocomposite presents high catalytic activity toward ammonia oxidation at low temperatures with 4.5% weight platinum loading. An anomalous partial selectivity toward nitrous oxide is observed for the first time, which can be traced back to the synergy of the particles and modified surface. This effect opens a path toward the design of nanocomposite catalysts with highly controlled environments, in which the size- and function-controlled cavities can be tuned in order to lower the reaction barriers.

18.
J Mol Model ; 19(6): 2183-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23344245

ABSTRACT

In this letter, we study the effect of cation charge on anion selectivity in the pore using grand canonical Monte Carlo simulations. The mechanism of anion selectivity inside nanopores was found to be primarily a consequence of the screening of negative charges by the cations. In the case of monovalent cations, screening was not very effective and anions were rejected. We found an 'off-state' at high pH and an 'on-state' at low pH. When there are divalent cations, screening is good and there is no rejection of the anion. The concentration of anions at high pH is similar to that at low pH. The system is always in an 'on-state'. Trivalent cations show an inverse selectivity mechanism: at high pH the concentration is higher than at low pH, i.e., the pore is in the 'on-state' at high pH and in the 'off-state' at low pH.


Subject(s)
Cations/chemistry , Nanopores , Cations, Divalent/chemistry , Cations, Monovalent/chemistry , Computer Simulation , Hydrogen-Ion Concentration , Ion Channels/physiology , Kinetics , Monte Carlo Method , Static Electricity
19.
Langmuir ; 28(3): 1824-32, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22168522

ABSTRACT

We present the results of Monte Carlo simulations of the adsorption of single-component ethane and ethylene and of equimolar mixtures of these two gases on bundles of closed, single-walled carbon nanotubes. Two types of nanotube bundles were used in the simulations: homogeneous (i.e., those in which all the nanotubes have identical diameters) and heterogeneous (those in which nanotubes of different diameters are allowed). We found that at the same pressure and temperature more ethane than ethylene adsorbs on the bundles over the entire range of pressures and temperatures explored. The simulation results for the equimolar mixtures show that the pressure at which maximum separation is attained is a very sensitive function of the diameter of the nanotubes present in the bundles. Simulations using heterogeneous bundles yield better agreement with single-component experimental data for isotherms and isosteric heats than those obtained from simulations using homogeneous bundles. Possible applications of nanotubes in gas separation are discussed. We explored the effect of the diameter of the nanotubes on the separation ability of these sorbents, both for the internal and for the external sites. We found that substrate selectivity is a decreasing function of temperature.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061121, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677234

ABSTRACT

We propose a surface reaction model for NO reduction with NH3 on a Pt(100) single crystal catalyst surface and we explore it by carrying out Monte Carlo simulations. Our model includes experimentally observed realistic features such as adsorbate-induced surface phase transition, structure-dependent sticking coefficients and reactivity, desorption probabilities, and surface diffusion of adsorbed species. We discuss similarities found while comparing the available experimental data and our model as reactant ratio and temperature vary. Simulations qualitatively reproduce the kinetic oscillations observed in reaction rates and surface coverages. Also, the essential role of the adsorbate-induced phase transition regarding the appearance of kinetic oscillations is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...