Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 31(8): 2707-2712, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31043765

ABSTRACT

In recent years, covalent organic frameworks (COFs) have attracted considerable attention due to their crystalline and porous nature, which positions them as intriguing candidates for diverse applications such as catalysis, sensing, or optoelectronics. The incorporation of dyes or semiconducting moieties into a rigid two-dimensional COF can offer emergent features such as enhanced light harvesting or charge transport. However, this approach can be challenging when dealing with dye molecules that exhibit a large aromatic backbone, since the steric demand of solubilizing side chains also needs to be integrated into the framework. Here, we report the successful synthesis of DPP2-HHTP-COF consisting of diketopyrrolopyrrole (DPP) diboronic acid and hexahydroxytriphenylene (HHTP) building blocks. The well-known boronate ester coupling motif guides the formation of a planar and rigid backbone and long-range molecular DPP stacks, resulting in a highly crystalline and porous material. DPP2-HHTP-COF exhibits excellent optical properties including strong absorption over the visible spectral range, broad emission into the NIR and a singlet lifetime of over 5 ns attributed to the formation of molecular stacks with J-type interactions between the DPP subcomponents in the COF. Electrical conductivity measurements of crystalline DPP2-HHTP-COF pellets revealed conductivity values of up to 10-6 S cm-1.

2.
J Am Chem Soc ; 140(48): 16544-16552, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30392360

ABSTRACT

The potential of covalent organic frameworks (COFs) for realizing porous, crystalline networks with tailored combinations of functional building blocks has attracted considerable scientific interest in the fields of gas storage, photocatalysis, and optoelectronics. Porphyrins are widely studied in biology and chemistry and constitute promising building blocks in the field of electroactive materials, but they reveal challenges regarding crystalline packing when introduced into COF structures due to their nonplanar configuration and strong electrostatic interactions between the heterocyclic porphyrin centers. A series of porphyrin-containing imine-linked COFs with linear bridges derived from terephthalaldehyde, 2,5-dimethoxybenzene-1,4-dicarboxaldehyde, 4,4'-biphenyldicarboxaldehyde and thieno[3,2- b]thiophene-2,5-dicarboxaldehyde, were synthesized, and their structural and optical properties were examined. By combining X-ray diffraction analysis with density-functional theory (DFT) calculations on multiple length scales, we were able to elucidate the crystal structure of the newly synthesized porphyrin-based COF containing thieno[3,2- b]thiophene-2,5-dicarboxaldehyde as linear bridge. Upon COF crystallization, the porphyrin nodes lose their 4-fold rotational symmetry, leading to the formation of extended slipped J-aggregate stacks. Steady-state and time-resolved optical spectroscopy techniques confirm the realization of the first porphyrin J-aggregates on a > 50 nm length scale with strongly red-shifted Q-bands and increased absorption strength. Using the COF as a structural template, we were thus able to force the porphyrins into a covalently embedded J-aggregate arrangement. This approach could be transferred to other chromophores; hence, these COFs are promising model systems for applications in photocatalysis and solar light harvesting, as well as for potential applications in medicine and biology.

3.
Angew Chem Int Ed Engl ; 57(3): 846-850, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29072828

ABSTRACT

Despite significant progress in the synthesis of covalent organic frameworks (COFs), reports on the precise construction of template-free nano- and microstructures of such materials have been rare. In the quest for dye-containing porous materials, a novel conjugated framework DPP-TAPP-COF with an enhanced absorption capability up to λ=800 nm has been synthesized by utilizing reversible imine condensations between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) and a diketopyrrolopyrrole (DPP) dialdehyde derivative. Surprisingly, the obtained COF exhibited spontaneous aggregation into hollow microtubular assemblies with outer and inner tube diameters of around 300 and 90 nm, respectively. A detailed mechanistic investigation revealed the time-dependent transformation of initial sheet-like agglomerates into the tubular microstructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...