Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Bioinspir Biomim ; 19(3)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38467074

ABSTRACT

A limiting factor in the design of smaller size uncrewed aerial vehicles is their inability to navigate through gust-laden environments. As a result, engineers have turned towards bio-inspired engineering approaches for gust mitigation techniques. In this study, the aerodynamics of a red-tailed hawk's response to variable-magnitude discrete transverse gusts was investigated. The hawk was flown in an indoor flight arena instrumented by multiple high-speed cameras to quantify the 3D motion of the bird as it navigated through the gust. The hawk maintained its flapping motion across the gust in all runs; however, it encountered the gust at different points in the flapping pattern depending on the run and gust magnitude. The hawk responded with a downwards pitching motion of the wing, decreasing the wing pitch angle to between -20∘and -5∘, and remained in this configuration until gust exit. The wing pitch data was then applied to a lower-order aerodynamic model that estimated lift coefficients across the wing. In gusts slower than the forward flight velocity (low gust ratio), the lift coefficient increases at a low-rate, to a maximum of around 2-2.5. In gusts faster than the forward flight velocity (high gust ratio), the lift coefficient initially increased rapidly, before increasing at a low-rate to a value around 4-5. In both regimes, the hawk's observed height change due to gust interaction was similar (and small), despite larger estimated lift coefficients over the high gust regime. This suggests another mitigation factor apart from the wing response is present. One potential factor is the tail pitching response observed here, which prior work has shown serves to mitigate pitch disturbances from gusts.


Subject(s)
Hawks , Animals , Flight, Animal/physiology , Birds/physiology , Motion , Wings, Animal/physiology , Biomechanical Phenomena , Models, Biological
2.
J Biomech Eng ; 145(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37382648

ABSTRACT

Tracheal collapsibility is a dynamic process altering local airflow dynamics. Patient-specific simulation is a powerful technique to explore the physiological and pathological characteristics of human airways. One of the key considerations in implementing airway computations is choosing the right inlet boundary conditions that can act as a surrogate model for understanding realistic airflow simulations. To this end, we numerically examine airflow patterns under the influence of different profiles, i.e., flat, parabolic, and Womersley, and compare these with a realistic inlet obtained from experiments. Simulations are performed in ten patient-specific cases with normal and rapid breathing rates during the inhalation phase of the respiration cycle. At normal breathing, velocity and vorticity contours reveal primary flow structures on the sagittal plane that impart strength to cross-plane vortices. Rapid breathing, however, encounters small recirculation zones. Quantitative flow metrics are evaluated using time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Overall, the flow metrics encountered in a real velocity profile are in close agreement with parabolic and Womersley profiles for normal conditions, however, the Womersley inlet alone conforms to a realistic profile under rapid breathing conditions.


Subject(s)
Lung , Respiration , Humans , Aged , Computer Simulation , Trachea
3.
J Expo Sci Environ Epidemiol ; 32(5): 697-705, 2022 09.
Article in English | MEDLINE | ID: mdl-35132199

ABSTRACT

BACKGROUND: Expiratory events, such as coughs, are often pulsatile in nature and result in vortical flow structures that transport expiratory particles. The World Health Organization recommends wearing face masks to reduce the airborne transmission of diseases such as SARS-CoV-2 (COVID-19). However, masks are not perfect as flow leakage occurs around the mask, and their effectiveness under realistic (multi-pulse) coughing conditions is unknown. OBJECTIVE: To assess the influence of expiratory flow pulsatility on the effectiveness of a surgical face mask by quantifying and classifying the flow leakage around the mask. METHODS: A custom-built pulsatile expiratory flow simulator is used to generate single- and multi-pulsed coughing events. Flow visualization and particle image velocimetry are used to assess the penetration distance and volume of leakage flow at the top and sides of a surgical mask. RESULTS: Leakage flow velocity profiles at the top and sides of a surgical mask take the form of a wall jet and a free-shear jet, respectively. Multi-pulsed expiratory flow events are found to generate greater leakage flow around the mask than single-pulsed events. SIGNIFICANCE: For the first time, the leakage volume of a surgical mask is shown to be correlated to the pulsatile nature of a cough. IMPACT STATEMENT: The novelties of this study are: First, flow field measurements are used to quantify and classify the leakage flow fields around the top and sides of a surgical mask, providing a benchmark for quantitative modeling of leakage flow velocity profiles. Second, the influence of pulsatility on the effectiveness of surgical face masks is studied by quantifying the leakage volume. For the first time, the leakage volume of a surgical mask is shown to be correlated to the pulsatile nature of a cough, as multi-pulsed expiratory flow events are found to generate greater flow leakage around the mask than single-pulsed events.


Subject(s)
COVID-19 , Masks , Cough , Exhalation , Humans , SARS-CoV-2
4.
J R Soc Interface ; 18(184): 20210599, 2021 11.
Article in English | MEDLINE | ID: mdl-34814733

ABSTRACT

Transcatheter aortic valve (TAV) thrombosis has been recognized as a significant problem that sometimes occurs as early as within 30 days after valve implantation, leading to increased concerns of stroke and long-term valve durability. In this article, a critical summary of the relevant literature on identifying potential mechanisms of TAV thrombosis from the perspective of the well-known Virchow's triad, which comprises blood flow, foreign materials and blood biochemistry, is presented. Blood flow mechanisms have been the primary focus thus far, with a general consensus on the flow mechanisms with respect to haemodynamic conditions, the influence of TAV placement and expansion and the influence of coronary flow. Less attention has been paid to the influence of blood biochemistry and foreign materials (and related endothelial damage), with little consensus among studies with regards to platelet and/or microparticle levels post-TAV implantation. Finally, we discuss the future outlook for research with unanswered scientific questions.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Thrombosis , Transcatheter Aortic Valve Replacement , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Humans , Transcatheter Aortic Valve Replacement/adverse effects
5.
Sci Rep ; 11(1): 3953, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597564

ABSTRACT

Contact and inhalation of virions-carrying human aerosols represent the primary transmission pathway for airborne diseases including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Relative to sneezing and coughing, non-symptomatic aerosol-producing activities such as speaking are highly understudied. The dispersions of aerosols from vocalization by a human subject are hereby quantified using high-speed particle image velocimetry. Syllables of different aerosol production rates were tested and compared to coughing. Results indicate aerosol productions and penetrations are not correlated. E.g. 'ti' and 'ma' have similar production rates but only 'ti' penetrated as far as coughs. All cases exhibited a rapidly penetrating "jet phase" followed by a slow "puff phase." Immediate dilution of aerosols was prevented by vortex ring flow structures that concentrated particles toward the plume-front. A high-fidelity assessment of risks to exposure must account for aerosol production rate, penetration, plume direction and the prevailing air current.


Subject(s)
Aerosols/analysis , COVID-19/transmission , SARS-CoV-2/chemistry , Speech/physiology , Adult , Aerosols/chemistry , COVID-19/virology , Cough , Humans , Male , Particle Size , Rheology/methods , SARS-CoV-2/pathogenicity , Sneezing , Verbal Behavior/physiology
6.
Catheter Cardiovasc Interv ; 95(5): 1009-1016, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31287238

ABSTRACT

OBJECTIVES: We investigated the impact of (transcatheter heart valve) THV expansion at the level of the native annulus and implant depth on valve performance and neo-sinus flow stasis. BACKGROUND: Flow stasis in the neo-sinus is one of the identified risk factors of THV thrombosis. METHODS: A 29 mm CoreValve and 26 mm SAPIEN 3 were deployed under different expansions (CoreValve, SAPIEN 3) and implant depths (CoreValve) within a patient-derived aortic root in a pulse duplicator. Fluorescent dye was injected during diastole into the neo-sinus and imaged over 20 cardiac cycles. Washout times were computed as a measure of flow stasis for each deployment. RESULTS: The 10% CoreValve under-expansion improved neo-sinus washout over full expansion by 8% (p < .001), and higher CoreValve implant depth improved neo-sinus washout (p < .001). The 10% SAPIEN 3 under-expansion improved neo-sinus washout by 23% (p < .001). Under-expansion of both valve types caused higher pressure gradients and smaller effective orifice areas than full expansion. CONCLUSIONS: Neo-sinus flow stasis is influenced by THV expansion and implant depth (CoreValve). The 10% valve under-deployment (oversizing) may facilitate reduced flow stasis in the neo-sinus with minimal increase in pressure gradients. This strategy may be helpful for patient anatomies, which are in-between transcatheter valve sizes.


Subject(s)
Aortic Valve/surgery , Heart Valve Prosthesis , Prosthesis Failure , Thrombosis/etiology , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Blood Flow Velocity , Equipment Failure Analysis , Hemodynamics , Humans , Materials Testing , Models, Cardiovascular , Patient-Specific Modeling , Prosthesis Design , Thrombosis/physiopathology
7.
Gen Thorac Cardiovasc Surg ; 68(1): 9-17, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31250203

ABSTRACT

OBJECTIVE: Rapid deployment surgical aortic valve replacement has emerged as an alternative to the contemporary sutured valve technique. A difference in transvalvular pressure has been observed clinically between RD-SAVR and contemporary SAVR. A mechanistic inquiry into the impact of the rapid deployment valve inflow frame design on the left ventricular outflow tract and valve hemodynamics is needed. METHODS: A 23 mm EDWARDS INTUITY Elite rapid deployment valve and a control contemporary, sutured valve, a 23 mm Magna Ease valve, were implanted in an explanted human heart by an experienced cardiac surgeon. Per convention, the rapid deployment valve was implanted with three non-pledgeted, simple guiding sutures, while fifteen pledgeted, mattress sutures were used to implant the contemporary surgical valve. In vitro flow models were created from micro-computed tomography scans of the implanted valves and surrounding cardiac anatomy. Particle image velocimetry and hydrodynamic characterization experiments were conducted in the vicinity of the valves in a validated pulsatile flow loop system. RESULTS: The rapid deployment and control valves were found to have mean transvalvular pressure gradients of 7.92 ± 0.37 and 10.13 ± 0.48 mmHg, respectively. The inflow frame of the rapid deployment valve formed a larger, more circular, left ventricular outflow tract compared to the control valve. Furthermore, it was found that the presence of the control valve's sub-annular pledgets compromised its velocity distribution and consequently its pressure gradient. CONCLUSIONS: The rapid deployment valve's intra-annular inflow frame provides for a larger, left ventricular outflow tract, thus reducing the transvalvular pressure gradient and improving overall hemodynamic performance.


Subject(s)
Heart Valve Prosthesis , Hemodynamics/physiology , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Bioprosthesis , Heart Valve Prosthesis Implantation/methods , Humans , Prosthesis Design , X-Ray Microtomography
8.
J R Soc Interface ; 16(154): 20190063, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31113333

ABSTRACT

The recent unexpected discovery of thrombosis in transcatheter heart valves (THVs) has led to increased concerns of long-term valve durability. Based on the clinical evidence combined with Virchow's triad, the primary hypothesis is that low-velocity blood flow around the valve could be a primary cause for thrombosis. However, due to limited optical access in such unsteady three-dimensional biomedical flows, measurements are challenging. In this study, for the first time, we employ a novel single camera volumetric velocimetry technique to investigate unsteady three-dimensional cardiovascular flows. Validation of the novel volumetric velocimetry technique with standard planar particle image velocimetry (PIV) technique demonstrated the feasibility of adopting this new technique to investigate biomedical flows. This technique was used to quantify the three-dimensional velocity field in the vicinity of a validated, custom developed, transparent THV in a bench-top pulsatile flow loop. Large volumetric regions of flow stagnation were observed in the neo-sinus throughout the cardiac cycle, with stagnation defined as a velocity magnitude lower than 0.05 m s-1. The volumetric scalar viscous shear stress quantified via the three-dimensional shear stress tensor was within the range of low shear-inducing thrombosis observed in the literature. Such high-fidelity volumetric quantitative data and novel imaging techniques used to obtain it will enable fundamental investigation of heart valve thrombosis in addition to providing a reliable and robust database for validation of computational tools.


Subject(s)
Heart Valve Prosthesis , Models, Cardiovascular , Prosthesis Design , Stress, Mechanical , Thrombosis/physiopathology , Blood Flow Velocity , Humans , Pulsatile Flow , Thrombosis/etiology
9.
Ann Am Thorac Soc ; 16(8): 982-989, 2019 08.
Article in English | MEDLINE | ID: mdl-30865842

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation. Spirometry loops are not smooth curves and have undulations and peaks that likely reflect heterogeneity of airflow.Objectives: To assess whether the Peak Index, the number of peaks adjusted for lung size, is associated with clinical outcomes.Methods: We analyzed spirometry data of 9,584 participants enrolled in the COPDGene study and counted the number of peaks in the descending part of the expiratory flow-volume curve from the peak expiratory flow to end-expiration. We adjusted the peaks count for the volume of the lungs from peak expiratory flow to end-expiration to derive the Peak Index. Multivariable regression analyses were performed to test associations between the Peak Index and lung function, respiratory morbidity, structural lung disease on computed tomography (CT), forced expiratory volume in 1 second (FEV1) decline, and mortality.Results: The Peak Index progressively increased from Global Initiative for Chronic Obstructive Lung Disease stage 0 through 4 (P < 0.001). On multivariable analysis, the Peak Index was significantly associated with CT emphysema (adjusted ß = 0.906; 95% confidence interval [CI], 0.789 to 1.023; P < 0.001) and small airways disease (adjusted ß = 1.367; 95% CI, 1.188 to 1.545; P < 0.001), St. George's Respiratory Questionnaire score (adjusted ß = 1.075; 95% CI, 0.807 to 1.342; P < 0.001), 6-minute-walk distance (adjusted ß = -1.993; 95% CI, -3.481 to -0.506; P < 0.001), and FEV1 change over time (adjusted ß = -1.604; 95% CI, -2.691 to -0.516; P = 0.004), after adjustment for age, sex, race, body mass index, current smoking status, pack-years of smoking, and FEV1. The Peak Index was also associated with the BODE (body mass index, airflow obstruction, dyspnea, and exercise capacity) index and mortality (P < 0.001).Conclusions: The Peak Index is a spirometry metric that is associated with CT measures of lung disease, respiratory morbidity, lung function decline, and mortality.Clinical trial registered with www.clinicaltrials.gov (NCT00608764).


Subject(s)
Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Spirometry , Aged , Cross-Sectional Studies , Female , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Male , Middle Aged , Multivariate Analysis , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Emphysema/physiopathology , Severity of Illness Index , Smoking/adverse effects , Smoking/physiopathology , Surveys and Questionnaires , Survival Analysis , Tomography, X-Ray Computed , Walk Test
10.
Cardiovasc Eng Technol ; 9(3): 273-287, 2018 09.
Article in English | MEDLINE | ID: mdl-29532332

ABSTRACT

Experimental flow field characterization is a critical component of the assessment of the hemolytic and thrombogenic potential of heart valve substitutes, thus it is important to identify best practices for these experimental techniques. This paper presents a brief review of commonly used flow assessment techniques such as Particle image velocimetry (PIV), Laser doppler velocimetry, and Phase contrast magnetic resonance imaging and a comparison of these methodologies. In particular, recommendations for setting up planar PIV experiments such as recommended imaging instrumentation, acquisition and data processing are discussed in the context of heart valve flows. Multiple metrics such as residence time, local velocity and shear stress that have been identified in the literature as being relevant to hemolysis and thrombosis in heart valves are discussed. Additionally, a framework for uncertainty analysis and data reporting for PIV studies of heart valves is presented in this paper. It is anticipated that this paper will provide useful information for heart valve device manufacturers and researchers to assess heart valve flow fields for the potential for hemolysis and thrombosis.


Subject(s)
Benchmarking , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Hemodynamics , Laser-Doppler Flowmetry , Magnetic Resonance Imaging , Materials Testing/methods , Animals , Benchmarking/standards , Blood Flow Velocity , Heart Valve Prosthesis/standards , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/standards , Hemolysis , Humans , Laser-Doppler Flowmetry/standards , Magnetic Resonance Imaging/standards , Materials Testing/standards , Models, Statistical , Prosthesis Design , Risk Assessment , Risk Factors , Stress, Mechanical , Thrombosis/blood , Thrombosis/etiology , Thrombosis/physiopathology , Uncertainty
11.
J Magn Reson Imaging ; 47(1): 246-254, 2018 01.
Article in English | MEDLINE | ID: mdl-28390180

ABSTRACT

PURPOSE: Valve mediated hemodynamics have been postulated to contribute to pathology of the ascending aorta (AAo). The objective of this study is to assess the association of aortic valve morphology and hemodynamics with downstream AAo size in subjects with bicuspid aortic valve (BAV) disease. MATERIALS AND METHODS: Four-dimensional flow MRI at 1.5 or 3 Tesla was used to evaluate the hemodynamics in the proximal AAo of 52 subjects: size-matched controls with tricuspid aortic valves (n = 24, mid ascending aorta [MAA] diameter = 38.0 ± 4.9 mm) and BAV patients with aortic dilatation (n = 14 right and left coronary leaflet fusion [RL]-BAV, MAA diameter = 38.1 ± 5.3 mm; n = 14 right and noncoronary leaflet fusion [RN]-BAV, MAA diameter = 36.5 ± 6.6 mm). A validated semi-automated technique was used to evaluate hemodynamic metrics (flow angle, flow displacement, and jet quadrant) and valve morphology (orifice circularity) for all subjects. Regression analysis of these metrics to AAo diameter was performed. RESULTS: RN-BAV subjects displayed a stronger correlation between hemodynamic metrics in the proximal AAo with diameter in the distal AAo compared with size-matched tricuspid aortic valve (TAV) controls and RL-BAV subjects. The distal AAo diameter was found to be strongly correlated to the upstream flow displacement (R2adjusted = 0.75) and flow angle (R2adjusted = 0.66) measured at the sino-tubular junction (STJ). Orifice circularity was also strongly correlated (R2adjusted = 0.53) to the distal AAo diameter in RN-BAV subjects. For TAV controls and RL-BAV subjects, correlations were weaker (R2adjusted < 0.2). CONCLUSION: Hemodynamics in the STJ were strongly correlated to the distal AAo diameter for the RN-BAV subjects. Hemodynamic metrics were more strongly correlated to the downstream aortic size when compared with valve morphology metrics. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:246-254.


Subject(s)
Aorta/diagnostic imaging , Aortic Diseases/diagnostic imaging , Aortic Valve/diagnostic imaging , Magnetic Resonance Imaging , Adult , Aged , Aortic Valve/abnormalities , Aortic Valve Stenosis/diagnostic imaging , Bicuspid Aortic Valve Disease , Electrocardiography/methods , Female , Heart Valve Diseases/diagnostic imaging , Hemodynamics , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Retrospective Studies
12.
Ann Biomed Eng ; 46(1): 135-147, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29067563

ABSTRACT

Several studies exist modeling the Fontan connection to understand its hemodynamic ties to patient outcomes (Chopski in: Experimental and Computational Assessment of Mechanical Circulatory Assistance of a Patient-Specific Fontan Vessel Configuration. Dissertation, 2013; Khiabani et al. in J Biomech 45:2376-2381, 2012; Taylor and Figueroa in Annu Rev Biomed 11:109-134, 2009; Vukicevic et al. in ASAIO J 59:253-260, 2013). The most patient-accurate of these studies include flexible, patient-specific total cavopulmonary connections. This study improves Fontan hemodynamic modeling by validating Fontan model flexibility against a patient-specific bulk compliance value, and employing real-time phase contrast magnetic resonance flow data. The improved model was employed to acquire velocity field information under breath-held, free-breathing, and exercise conditions to investigate the effect of these conditions on clinically important Fontan hemodynamic metrics including power loss and viscous dissipation rate. The velocity data, obtained by stereoscopic particle image velocimetry, was visualized for qualitative three-dimensional flow field comparisons between the conditions. Key hemodynamic metrics were calculated from the velocity data and used to quantitatively compare the flow conditions. The data shows a multi-factorial and extremely patient-specific nature to Fontan hemodynamics.


Subject(s)
Exercise/physiology , Fontan Procedure , Models, Cardiovascular , Patient-Specific Modeling , Respiration , Child , Female , Hemodynamics , Humans , Magnetic Resonance Imaging , Male
13.
Circulation ; 136(17): 1598-1609, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-28724752

ABSTRACT

BACKGROUND: Transcatheter heart valve (THV) thrombosis has been increasingly reported. In these studies, thrombus quantification has been based on a 2-dimensional assessment of a 3-dimensional phenomenon. METHODS: Postprocedural, 4-dimensional, volume-rendered CT data of patients with CoreValve, Evolut R, and SAPIEN 3 transcatheter aortic valve replacement enrolled in the RESOLVE study (Assessment of Transcatheter and Surgical Aortic Bioprosthetic Valve Dysfunction With Multimodality Imaging and Its Treatment with Anticoagulation) were included in this analysis. Patients on anticoagulation were excluded. SAPIEN 3 and CoreValve/Evolut R patients with and without hypoattenuated leaflet thickening were included to study differences between groups. Patients were classified as having THV thrombosis if there was any evidence of hypoattenuated leaflet thickening. Anatomic and THV deployment geometries were analyzed, and thrombus volumes were computed through manual 3-dimensional reconstruction. We aimed to identify and evaluate risk factors that contribute to THV thrombosis through the combination of retrospective clinical data analysis and in vitro imaging in the space between the native and THV leaflets (neosinus). RESULTS: SAPIEN 3 valves with leaflet thrombosis were on average 10% further expanded (by diameter) than those without (95.5±5.2% versus 85.4±3.9%; P<0.001). However, this relationship was not evident with the CoreValve/Evolut R. In CoreValve/Evolut Rs with thrombosis, the thrombus volume increased linearly with implant depth (R2=0.7, P<0.001). This finding was not seen in the SAPIEN 3. The in vitro analysis showed that a supraannular THV deployment resulted in a nearly 7-fold decrease in stagnation zone size (velocities <0.1 m/s) when compared with an intraannular deployment. In addition, the in vitro model indicated that the size of the stagnation zone increased as cardiac output decreased. CONCLUSIONS: Although transcatheter aortic valve replacement thrombosis is a multifactorial process involving foreign materials, patient-specific blood chemistry, and complex flow patterns, our study indicates that deployed THV geometry may have implications on the occurrence of thrombosis. In addition, a supraannular neosinus may reduce thrombosis risk because of reduced flow stasis. Although additional prospective studies are needed to further develop strategies for minimizing thrombus burden, these results may help identify patients at higher thrombosis risk and aid in the development of next-generation devices with reduced thrombosis risk.


Subject(s)
Heart Valves/surgery , Hemodynamics , Models, Cardiovascular , Thrombosis/physiopathology , Transcatheter Aortic Valve Replacement/adverse effects , Female , Humans , Male , Thrombosis/etiology
14.
Ann Biomed Eng ; 45(5): 1305-1314, 2017 05.
Article in English | MEDLINE | ID: mdl-28091966

ABSTRACT

An incompetent aortic valve (AV) results in aortic regurgitation (AR), where retrograde flow of blood into the left ventricle (LV) is observed. In this work, we parametrically characterized the detailed changes in intra-ventricular flow during diastole as a result of AR in a physiological in vitro left-heart simulator (LHS). The loss of energy within the LV as the level of AR increased was also assessed. The validated LHS consisted of an optically-clear, flexible wall LV and a modular AV holder. Two-component, planar, digital particle image velocimetry was used to visualize and quantify intra-ventricular flow. A large coherent vortical structure which engulfed the whole LV was observed under control conditions. In the cases with AR, the regurgitant jet was observed to generate a "kinematic obstruction" between the mitral valve and the LV apex, preventing the trans-mitral jet from generating a coherent vortical structure. The regurgitant jet was also observed to impinge on the inferolateral wall of the LV. Energy dissipation rate (EDR) for no, trace, mild, and moderate AR were found to be 1.15, 2.26, 3.56, and 5.99 W/m3, respectively. This study has, for the first time, performed an in vitro characterization of intra-ventricular flow in the presence of AR. Mechanistically, the formation of a "kinematic obstruction" appears to be the cause of the increased EDR (a metric quantifiable in vivo) during AR. EDR increases non-linearly with AR fraction and could potentially be used as a metric to grade severity of AR and develop clinical interventional timing strategies for patients.


Subject(s)
Aortic Valve Insufficiency/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Ventricular Outflow Obstruction/physiopathology , Animals , Biomechanical Phenomena , Blood Flow Velocity , Swine
15.
Ann Biomed Eng ; 45(2): 310-331, 2017 02.
Article in English | MEDLINE | ID: mdl-27873034

ABSTRACT

Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers.


Subject(s)
Heart Valve Prosthesis , Prosthesis Design/methods , Transcatheter Aortic Valve Replacement/instrumentation , Transcatheter Aortic Valve Replacement/methods , Animals , Humans , Transcatheter Aortic Valve Replacement/adverse effects
16.
Ann Biomed Eng ; 45(2): 405-412, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27164838

ABSTRACT

Valve-in-valve transcatheter aortic valve replacement (VIV-TAVR) has proven to be a successful treatment for high risk patients with failing aortic surgical bioprostheses. However, thrombus formation on the leaflets of the valve has emerged as a major issue in such procedures, posing a risk of restenosis, thromboembolism, and reduced durability. In this work we attempted to understand the effect of deployment position of the transcatheter heart valve (THV) on the spatio-temporal flow field within the sinus in VIV-TAVR. Experiments were performed in an in vitro pulsatile left heart simulator using high-speed Particle Image Velocimetry (PIV) to measure the flow field in the sinus region. The time-resolved velocity data was used to understand the qualitative and quantitative flow patterns. In addition, a particle tracking technique was used to evaluate relative thrombosis risk via sinus washout. The velocity data demonstrate that implantation position directly affects sinus flow patterns, leading to increased flow stagnation with increasing deployment height. The particle tracking simulations showed that implantation position directly affected washout time, with the highest implantation resulting in the least washout. These results clearly demonstrate the flow pattern and flow stagnation in the sinus is sensitive to THV position. It is, therefore, important for the interventional cardiologist and cardiac surgeon to consider how deployment position could impact flow stagnation during VIV-TAVR.


Subject(s)
Heart Valve Prosthesis , Models, Cardiovascular , Sinus of Valsalva/physiopathology , Sinus of Valsalva/surgery , Transcatheter Aortic Valve Replacement , Blood Flow Velocity , Humans
17.
JACC Cardiovasc Interv ; 9(15): 1618-28, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27491613

ABSTRACT

OBJECTIVES: The purpose of this study was to optimize hemodynamic performance of valve-in-valve (VIV) according to transcatheter heart valve (THV) type (balloon vs. self-expandable), size, and deployment positions in an in vitro model. BACKGROUND: VIV transcatheter aortic valve replacement is increasingly used for the treatment of patients with a failing surgical bioprosthesis. However, there is a paucity in understanding the THV hemodynamic performance in this setting. METHODS: VIV transcatheter aortic valve replacement was simulated in a physiologic left heart simulator by deploying a 23-mm SAPIEN, 23-mm CoreValve, and 26-mm CoreValve within a 23-mm Edwards PERIMOUNT surgical bioprosthesis. Each THV was deployed into 5 different positions: normal (inflow of THV was juxtaposed with inflow of surgical bioprosthesis), -3 and -6 mm subannular, and +3 and +6 mm supra-annular. At a heart rate of 70 bpm and cardiac output of 5.0 l/min, mean transvalvular pressure gradients (TVPG), regurgitant fraction (RF), effective orifice area, pinwheeling index, and pullout forces were evaluated and compared between THVs. RESULTS: Although all THV deployments resulted in hemodynamics that would have been consistent with Valve Academic Research Consortium-2 procedure success, we found significant differences between THV type, size, and deployment position. For a SAPIEN valve, hemodynamic performance improved with a supra-annular deployment, with the best performance observed at +6 mm. Compared with a normal position, +6 mm resulted in lower TVPG (9.31 ± 0.22 mm Hg vs. 11.66 ± 0.22 mm Hg; p < 0.01), RF (0.95 ± 0.60% vs. 1.27 ± 0.66%; p < 0.01), and PI (1.23 ± 0.22% vs. 3.46 ± 0.18%; p < 0.01), and higher effective orifice area (1.51 ± 0.08 cm(2) vs. 1.35 ± 0.02 cm(2); p < 0.01) at the cost of lower pullout forces (5.54 ± 0.20 N vs. 7.09 ± 0.49 N; p < 0.01). For both CoreValve sizes, optimal deployment was observed at the normal position. The 26-mm CoreValve, when compared with the 23-mm CoreValve and 23-mm SAPIEN, had a lower TVPG (7.76 ± 0.14 mm Hg vs. 10.27 ± 0.18 mm Hg vs. 9.31 ± 0.22 mm Hg; p < 0.01) and higher effective orifice area (1.66 ± 0.05 cm(2) vs. 1.44 ± 0.05 cm(2) vs. 1.51 ± 0.08 cm(2); p < 0.01), RF (4.79 ± 0.67% vs. 1.98 ± 0.36% vs. 0.95 ± 1.68%; p < 0.01), PI (29.13 ± 0.22% vs. 6.57 ± 0.14% vs. 1.23 ± 0.22%; p < 0.01), and pullout forces (10.65 ± 0.66 N vs. 5.35 ± 0.18 N vs. 5.54 ± 0.20 N; p < 0.01). CONCLUSIONS: The optimal deployment location for VIV in a 23 PERIMOUNT surgical bioprosthesis was at a +6 mm supra-annular position for a 23-mm SAPIEN valve and at the normal position for both the 23-mm and 26-mm CoreValves. The 26-mm CoreValve had lower gradients, but higher RF and PI than the 23-mm CoreValve and the 23-mm SAPIEN. In their optimal positions, all valves resulted in hemodynamics consistent with the definitions of Valve Academic Research Consortium-2 procedural success. Long-term studies are needed to understand the clinical impact of these hemodynamic performance differences in patients who undergo VIV transcatheter aortic valve replacement.


Subject(s)
Aortic Valve/surgery , Bioprosthesis , Heart Valve Prosthesis , Hemodynamics , Transcatheter Aortic Valve Replacement/instrumentation , Aortic Valve/physiopathology , Balloon Valvuloplasty , Humans , Models, Anatomic , Models, Cardiovascular , Prosthesis Design , Transcatheter Aortic Valve Replacement/adverse effects
18.
Am J Physiol Heart Circ Physiol ; 310(11): H1801-7, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27106040

ABSTRACT

Acute aortic regurgitation (AR) post-chronic aortic stenosis is a prevalent phenomenon occurring in patients who undergo transcatheter aortic valve replacement (TAVR) surgery. The objective of this work was to characterize the effects of left ventricular diastolic stiffness (LVDS) and AR severity on LV performance. Three LVDS models were inserted into a physiological left heart simulator. AR severity was parametrically varied through four levels (ranging from trace to moderate) and compared with a competent aortic valve. Hemodynamic metrics such as average diastolic pressures (DP) and reduction in transmitral flow were measured. AR index was calculated as a function of AR severity and LVDS, and the work required to make up for lost volume due to AR was estimated. In the presence of trace AR, higher LVDS had up to a threefold reduction in transmitral flow (13% compared with 3.5%) and a significant increase in DP (2-fold). The AR index ranged from ∼42 to 16 (no AR to moderate AR), with stiffer LVs having lower values. To compensate for lost volume due to AR, the low, medium, and high LVDS models were found to require 5.1, 5.5, and 6.6 times more work, respectively. This work shows that the LVDS has a significant effect on the LV performance in the presence of AR. Therefore, the LVDS of potential TAVR patients should be assessed to gain an initial indication of their ability to tolerate post-procedural AR.


Subject(s)
Aortic Valve Insufficiency/physiopathology , Aortic Valve Stenosis/physiopathology , Heart Ventricles/physiopathology , Hemodynamics/physiology , Models, Cardiovascular , Vascular Stiffness/physiology , Aortic Valve/physiopathology , Humans , Vascular Resistance/physiology , Ventricular Function, Left/physiology
19.
Ann Thorac Surg ; 101(5): 1759-65, 2016 May.
Article in English | MEDLINE | ID: mdl-26806168

ABSTRACT

BACKGROUND: Durability and hemodynamic performance are top considerations in selecting a valve for valve replacement surgery. This study was conducted in order to evaluate the long-term mechanical durability and hydrodynamic performance of the Carpentier-Edwards PERIMOUNT Magna Ease Bioprostheses, through 1 billion cycles (equivalent to 25 years). METHODS: In vitro valve hydrodynamic performance, durability, and quantitative flow visualization were conducted in accordance with ISO 5840:2005 heart valve standard. The study valves were subjected to accelerated valve cycling to an equivalent of 25 years of wear. Hydrodynamic evaluations at intervals of 100 million cycles (2.5 years) were performed on the study valves. New uncycled Magna Ease valves were used as hydrodynamic controls in this study. A quantitative assessment of the fluid motion downstream of the control and study valves was performed using particle image velocimetry. The results between the test and control valves were compared to assess valve performance after an equivalent of 25 years of wear. RESULTS: All study valves met the ISO 5840 requirements for effective orifice area, 1.81 ± 0.06 cm(2) and 2.06 ± 0.17 cm(2), and regurgitant fraction, 1.11% ± 0.87% and 2.5% ± 2.34%, for the 21 mm and 23 mm study valves, respectively. The flow characterization of the control valves and the billion-cycle valves demonstrated that the valves exhibited similar flow characteristics. The velocity and shear stress fields were similar between the control and study valves. CONCLUSIONS: The Magna Ease valves demonstrated excellent durability and hydrodynamic performance after an equivalent of 25 years of simulated in vitro wear. All study valves successfully endured 1 billion cycles of simulated wear, 5 times longer than the standard requirement for a tissue valve as stipulated in ISO 5840.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Humans , Hydrodynamics , Stress, Mechanical
20.
JACC Cardiovasc Interv ; 8(15): 2026-2033, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26627992

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the hemodynamic performance of a transcatheter heart valve (THV) deployed at different valve-in-valve positions in an in vitro model using a small surgical bioprosthesis. BACKGROUND: Patients at high surgical risk with failing 19-mm surgical aortic bioprostheses are not candidates for valve-in-valve transcatheter aortic valve replacement, because of risk for high transvalvular pressure gradients (TVPGs) and patient-prosthesis mismatch. METHODS: A 19-mm stented aortic bioprosthesis was mounted into the aortic chamber of a pulse duplicator, and a 23-mm low-profile balloon-expandable THV was deployed (valve-in-valve) in 4 positions: normal (bottom of the THV stent aligned with the bottom of the surgical bioprosthesis sewing ring) and 3, 6, and 8 mm above the normal position. Under controlled hemodynamic status, the effect of these THV positions on valve performance (mean TVPG, geometric orifice area, and effective orifice area), thrombotic potential (sinus shear stress), and migration risk (pullout force and embolization flow rate) were assessed. RESULTS: Compared with normal implantation, a progressive reduction of mean TVPG was observed with each supra-annular THV position (normal: 33.10 mm Hg; 3 mm: 24.69 mm Hg; 6 mm: 19.16 mm Hg; and 8 mm: 12.98 mm Hg; p < 0.001). Simultaneously, we observed increases in geometric orifice area (normal: 0.83 cm(2); 8 mm: 1.60 cm(2); p < 0.001) and effective orifice area (normal: 0.80 cm(2); 8 mm: 1.28 cm(2); p < 0.001) and reductions in sinus shear stresses (normal: 153 dyne/cm(2); 8 mm: 40 dyne/cm(2); p < 0.001), pullout forces (normal: 1.55 N; 8 mm: 0.68 N; p < 0.05), and embolization flow rates (normal: 32.91 l/min; 8 mm: 26.06 l/min; p < 0.01). CONCLUSIONS: Supra-annular implantation of a THV in a small surgical bioprosthesis reduces mean TVPG but may increase the risk for leaflet thrombosis and valve migration. A 3- to 6-mm supra-annular deployment could be an optimal position in these cases.


Subject(s)
Aortic Valve/surgery , Bioprosthesis , Cardiac Catheterization/instrumentation , Heart Valve Diseases/therapy , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Hemodynamics , Prosthesis Failure , Aortic Valve/physiopathology , Cardiac Catheterization/adverse effects , Equipment Failure Analysis , Heart Valve Diseases/diagnosis , Heart Valve Diseases/physiopathology , Heart Valve Diseases/surgery , Heart Valve Prosthesis Implantation/adverse effects , Humans , Materials Testing , Models, Anatomic , Prosthesis Design , Thrombosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...