Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(23): 4954-4956, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108271

Subject(s)
Nerve Net , Thalamus
2.
J Neurophysiol ; 118(4): 2216-2231, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28724782

ABSTRACT

We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process.NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters.


Subject(s)
Pursuit, Smooth , Visual Fields , Animals , Discrimination, Psychological , Evoked Potentials, Visual , Macaca mulatta , Male , Neurons/physiology , Reaction Time , Visual Perception
3.
J Neurophysiol ; 118(2): 986-1001, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28515286

ABSTRACT

We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex.NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the oculomotor vermis during pursuit lies along a null-axis for saccades and vice versa. Thus the vermis can play independent roles in the two kinds of eye movement.


Subject(s)
Cerebellar Vermis/physiology , Learning/physiology , Motor Activity/physiology , Purkinje Cells/physiology , Pursuit, Smooth/physiology , Saccades/physiology , Action Potentials , Animals , Biomechanical Phenomena , Eye Movement Measurements , Macaca mulatta , Male , Microelectrodes , Motion Perception/physiology , Neuropsychological Tests , Regression Analysis
4.
Curr Opin Behav Sci ; 8: 28-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27933311

ABSTRACT

Recent studies of sensorimotor processing have benefited from decision-making paradigms that emphasize the selection of appropriate movements. Selecting when to make those responses, or action timing, is important as well. Although the cerebellum is commonly viewed as a controller of movement dynamics, its role in action timing is also firmly supported. Several lines of research have now extended this idea. Anatomical findings have revealed connections between the cerebellum and broader timing circuits, neurophysiological results have suggested mechanisms for timing within its microcircuitry, and theoretical work has indicated how temporal signals are processed through it and decoded by its targets. These developments are inspiring renewed studies of the role of the cerebellar loops in action timing.

SELECTION OF CITATIONS
SEARCH DETAIL
...