Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 13(8)2017 02.
Article in English | MEDLINE | ID: mdl-27966819

ABSTRACT

By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

2.
Nanoscale ; 8(35): 15999-6004, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27546468

ABSTRACT

The mechanical properties of electrodeposited copper with highly-oriented nanoscale twins were investigated by micropillar compression. Uniform nanotwinned copper films with preferred twin orientations, either vertical or horizontal, were obtained by controlling the plating conditions. In addition, an ultrafine grained copper film was synthesized to be used as a reference sample. The mechanical properties were assessed by in situ SEM microcompression of micropillars fabricated with a focused ion beam. Results show that the mechanical properties are highly sensitive to the twin orientation. When compared to the ultrafine grained sample, an increase of 44% and 130% in stress at 5% offset strain was observed in quasi-static tests for vertically and horizontally aligned twins, respectively. Inversely strain rate jump microcompression testing reveals higher strain sensitivity for vertical twins. These observations are attributed to a change in deformation mechanism from dislocation pile-ups at the twin boundary for horizontal twins to dislocations threading inside the twin lamella for vertical twins.

3.
Nano Lett ; 16(1): 812-6, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26683095

ABSTRACT

Diamond ⟨100⟩- and ⟨111⟩-oriented nanopillars were fabricated by focused ion beam (FIB) milling from synthetic single crystals and compressed using a larger diameter diamond punch. Uniaxial compressive failure was observed via fracture with a plateau in maximum stress of ∼0.25 TPa, the highest uniaxial strength yet measured. This corresponded to maximum shear stresses that converged toward 75 GPa or ∼ G/7 at small sizes, which are very close to the ultimate theoretical yield stress estimate of G/2π.

4.
Nat Mater ; 13(7): 740-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24907926

ABSTRACT

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.


Subject(s)
Bone and Bones/physiology , Compressive Strength , Animals , Biomechanical Phenomena , Bone and Bones/ultrastructure , Microscopy, Electron, Scanning , Sheep/anatomy & histology , Sheep/physiology , Stress, Mechanical
5.
J Electron Microsc (Tokyo) ; 59(5): 345-9, 2010.
Article in English | MEDLINE | ID: mdl-20511215

ABSTRACT

Fibre deformations such as kinks and micro-compressions are significant parameters in determining the quality of industrial pulps. Undoubtedly, very little information has been obtained so far on fibre deformation because it is very tedious to handle the specimens. In this study, a novel in situ scanning electron microscope (SEM) micro-indentation technique was adopted for the first time to study the deformation of single industrial pulp fibres in the transverse direction. A one-to-one correspondence between load drops in load-displacement curve and cell wall deformation was obtained by using the SEM video sequence recorded during micro-indentation. The cell wall deformation occurred by 'elastic' sinking-in and lateral bulging of the microfibrils. Finally, the critical load (stress) required to initiate a crack in the cell wall was measured for different unbleached pulp fibres.

SELECTION OF CITATIONS
SEARCH DETAIL
...