Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Virchows Arch ; 465(4): 395-400, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108707

ABSTRACT

Colorectal cancer (CRC) can be divided into non-mucinous and mucinous subtypes, of which the latter portends to have a worse clinical prognosis. A previous study suggested a putative link between SOX2 expression observed selectively in mucinous CRC and the induction of the gastric mucin MUC5AC. In this study, we re-evaluated the expression behavior of SOX2, MUC5AC, and CDX2 in both types of CRC. We performed immunohistochemical analysis on 90 cases of non-mucinous CRCs, 57 cases of mucinous CRCs, and 15 case-matched normal intestinal mucosa. In contrast to the previously suggested link between SOX2 and mucinous CRC, we observe aberrant expression of SOX2 at equal levels in both subtypes. Fluorescence in situ hybridization (FISH) analysis shows that expression is not attributed to genomic amplification. While SOX2 and CDX2 are normally expressed in a reciprocal manner, SOX2-positive tumor cells co-express CDX2. Furthermore, we show that MUC5AC is expressed independently of SOX2. In conclusion, we show that aberrant SOX2 expression is specifically linked neither to mucinous CRCs nor to the induction of MUC5AC, in contrast to previous suggestions.


Subject(s)
Adenocarcinoma/pathology , Cell Differentiation , Colorectal Neoplasms/pathology , Mucin 5AC/biosynthesis , SOXB1 Transcription Factors/biosynthesis , Adenocarcinoma/metabolism , CDX2 Transcription Factor , Colorectal Neoplasms/metabolism , Gastric Mucins/metabolism , Homeodomain Proteins/biosynthesis , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence
2.
Virchows Arch ; 462(5): 515-22, 2013 May.
Article in English | MEDLINE | ID: mdl-23568430

ABSTRACT

Congenital gastric-type heteroplasia is common in intestinal duplications and anomalies, which originate from incomplete resorption of the omphalomesenteric duct during development. Two transcription factors determine the proximodistal specification of the gastrointestinal tract, SOX2, expressed exclusively in the proximal part of the primitive gut, and CDX2, expressed solely in the distal part. Aberrant expression of these factors may result in abnormal development and congenital abnormalities. Therefore, we analyzed the expression of SOX2 and CDX2 in a number of pediatric intestinal anomalies. We investigated the expression pattern of SOX2 and CDX2 in three congenital intestinal anomalies in which ectopic gastric tissue may be present, Meckel's diverticulum (N = 8), persistent ductus omphalomesentericus (N = 14), and intestinal duplications (N = 8). CDX2, but not SOX2, was detected in intestinal epithelial cells in tissue lacking gastric heteroplasia. In gastric-type heteroplasia, a reciprocal expression pattern existed between SOX2 and CDX2 in the gastric and intestinal tissues, respectively. Interestingly, patches of CDX2-positive cells were present within the gastric mucosa in a subset of Meckel's diverticula and intestinal duplications, suggesting that it is not the absence of CDX2, but rather the ectopic expression of SOX2 that leads to gastric tissue in the prospective intestinal tissue. This is in concordance with our previous mouse studies. Collectively, our data indicate that a fine balance between SOX2 and CDX2 expression in the gastrointestinal tract is essential for proper development and that ectopic expression of SOX2 may lead to malformations of the gut.


Subject(s)
Homeodomain Proteins/metabolism , Intestinal Mucosa/metabolism , Intestines/abnormalities , SOXB1 Transcription Factors/metabolism , Vitelline Duct/abnormalities , Adult , Aged , CDX2 Transcription Factor , Child , Female , Homeodomain Proteins/analysis , Humans , Immunohistochemistry , Infant , Infant, Newborn , Male , SOXB1 Transcription Factors/analysis
3.
J Mol Cell Biol ; 4(6): 377-85, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22679103

ABSTRACT

Various factors play an essential role in patterning the digestive tract. During development, Sox2 and Cdx2 are exclusively expressed in the anterior and the posterior parts of the primitive gut, respectively. However, it is unclear whether these transcription factors influence each other in determining specification of the naïve gut endoderm. We therefore investigated whether Sox2 redirects the fate of the prospective intestinal part of the primitive gut. Ectopic expression of Sox2 in the posterior region of the primitive gut caused anteriorization of the gut toward a gastric-like phenotype. Sox2 activated the foregut transcriptional program, in spite of sustained co-expression of endogenous Cdx2. However, binding of Cdx2 to its genomic targets and thus its transcriptional activity was strongly reduced. Recent findings indicate that endodermal Cdx2 is required to initiate the intestinal program and to suppress anterior cell fate. Our findings suggest that reduced Cdx2 expression by itself is not sufficient to cause anteriorization, but that Sox2 expression is also required. Moreover, it indicates that the balance between Sox2 and Cdx2 function is essential for proper specification of the primitive gut and that Sox2 may overrule the initial patterning of the primitive gut, emphasizing the plasticity of the primitive gut.


Subject(s)
Gastric Mucosa/metabolism , Gastrula/embryology , Gastrula/metabolism , Intestinal Mucosa/embryology , Intestinal Mucosa/metabolism , SOXB1 Transcription Factors/metabolism , Stomach/embryology , Animals , CDX2 Transcription Factor , Cell Proliferation , Endoderm/embryology , Endoderm/metabolism , Endoderm/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Intestines/embryology , Intestines/physiology , Mice , Mice, Transgenic/embryology , Mice, Transgenic/genetics , Mice, Transgenic/metabolism , Phenotype , SOXB1 Transcription Factors/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics
4.
Dev Biol ; 369(1): 91-100, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22691362

ABSTRACT

Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.


Subject(s)
Aging/genetics , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Intestines/embryology , Wnt Proteins/metabolism , Aging/drug effects , Animals , Cell Lineage/drug effects , Cell Lineage/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Mice , Mice, Transgenic , Models, Animal , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tetracycline/pharmacology , Wnt Proteins/genetics , Wnt-5a Protein
5.
Genesis ; 47(1): 7-13, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18942097

ABSTRACT

To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin-rtTA2-M2 mice were then bred with the previously developed tetO-HIST1H2BJ/GFP model to assess inducibility and tissue-specificity. Expression of the histone H2B-GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin-rtTA2-M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin-rtTA2-M2 system drives transgene expression in a dosage-dependent fashion. Thus, we have generated a novel doxycycline-inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology.


Subject(s)
Doxycycline/pharmacology , Gene Expression/drug effects , Genetic Engineering/methods , Intestines/physiology , Animals , Genes, Reporter/genetics , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Mice, Transgenic , Organ Specificity , Research , Titrimetry , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...