Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Microbiol ; 19(1): 150, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31272373

ABSTRACT

BACKGROUND: The prevalence of antibiotic resistance is increasing, and multidrug-resistant Pseudomonas aeruginosa has been identified as a serious threat to human health. The production of ß-lactamase is a key mechanism contributing to imipenem resistance in P. aeruginosa. Relebactam is a novel ß-lactamase inhibitor, active against class A and C ß-lactamases, that has been shown to restore imipenem susceptibility. In a series of studies, we assessed the interaction of relebactam with key mechanisms involved in carbapenem resistance in P. aeruginosa and to what extent relebactam might overcome imipenem non-susceptibility. RESULTS: Relebactam demonstrated no intrinsic antibacterial activity against P. aeruginosa, had no inoculum effect, and was not subject to efflux. Enzymology studies showed relebactam is a potent (overall inhibition constant: 27 nM), practically irreversible inhibitor of P. aeruginosa AmpC. Among P. aeruginosa clinical isolates from the SMART global surveillance program (2009, n = 993; 2011, n = 1702; 2015, n = 5953; 2016, n = 6165), imipenem susceptibility rates were 68.4% in 2009, 67.4% in 2011, 70.4% in 2015, and 67.3% in 2016. With the addition of 4 µg/mL relebactam, imipenem susceptibility rates increased to 87.6, 86.0, 91.7, and 89.8%, respectively. When all imipenem-non-susceptible isolates were pooled, the addition of 4 µg/mL relebactam reduced the mode imipenem minimum inhibitory concentration (MIC) 8-fold (from 16 µg/mL to 2 µg/mL) among all imipenem-non-susceptible isolates. Of 3747 imipenem-non-susceptible isolates that underwent molecular profiling, 1200 (32%) remained non-susceptible to the combination imipenem/relebactam (IMI/REL); 42% of these encoded class B metallo-ß-lactamases, 11% encoded a class A GES enzyme, and no class D enzymes were detected. No relationship was observed between alleles of the chromosomally-encoded P. aeruginosa AmpC and IMI/REL MIC. CONCLUSIONS: IMI/REL exhibited potential in the treatment of carbapenem-resistant P. aeruginosa infections, with the exception of isolates encoding class B, some GES alleles, and class D carbapenemases.


Subject(s)
Azabicyclo Compounds/pharmacology , Imipenem/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/drug effects , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Kinetics , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , beta-Lactamases/drug effects
2.
Bioorg Med Chem Lett ; 24(3): 780-5, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24433862

ABSTRACT

ß-Lactamase inhibitors with a bicyclic urea core and a variety of heterocyclic side chains were prepared and evaluated as potential partners for combination with imipenem to overcome class A and C ß-lactamase mediated antibiotic resistance. The piperidine analog 3 (MK-7655) inhibited both class A and C ß-lactamases in vitro. It effectively restored imipenem's activity against imipenem-resistant Pseudomonas and Klebsiella strains at clinically achievable concentrations. A combination of MK-7655 and Primaxin® is currently in phase II clinical trials for the treatment of Gram-negative bacterial infections.


Subject(s)
Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacology , Cilastatin/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , Imipenem/chemistry , beta-Lactamase Inhibitors , Cilastatin/pharmacology , Cilastatin, Imipenem Drug Combination , Crystallography, X-Ray , Drug Combinations , Drug Resistance, Bacterial/drug effects , Imipenem/pharmacology , Inhibitory Concentration 50 , Klebsiella/drug effects , Microbial Sensitivity Tests , Models, Biological , Pseudomonas/drug effects , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 21(14): 4267-70, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21676616

ABSTRACT

The bridged monobactam ß-lactamase inhibitor MK-8712 (1) effectively inhibits class C ß-lactamases. Side chain N-alkylated and ring-opened analogs of 1 were prepared and evaluated for combination with imipenem to overcome class C ß-lactamase mediated resistance. Although some analogs were more potent inhibitors of AmpC, none exhibited better synergy with imipenem than 1.


Subject(s)
Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Monobactams/chemical synthesis , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Binding Sites , Computer Simulation , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Monobactams/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , beta-Lactamases/metabolism
4.
Bioorg Med Chem Lett ; 21(14): 4363-5, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21664132

ABSTRACT

The preparation and characterization of a series of thiophenyl oxime phosphonate beta-lactamase inhibitors is described. A number of these analogs were potent and selective inhibitors of class C beta-lactamases from Pseudomonas aeruginosa and Enterobacter cloacae. Compounds 3b and 7 reduced the MIC of imipenem against an AmpC expressing strain of imipenem-resistant P. aeruginosa. A number of the title compounds retained micromolar potency against the class D OXA-40 beta-lactamase from Acinetobacter baumannii and at high concentrations compound 3b was shown to reduce the MIC of imipenem against a highly imipenem-resistant strain of A. baumanii expressing the OXA-40 beta-lactamase. In mice compound 3b exhibited phamacokinetics similar to imipenem.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Organophosphonates/chemistry , Oximes/chemistry , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Organophosphonates/chemical synthesis , Organophosphonates/pharmacology , Oximes/chemical synthesis , Oximes/pharmacology , Thiophenes/chemistry , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...