Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 103(3): 1646-57, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20089816

ABSTRACT

Motion vision is essential for navigating through the environment. Due to its genetic amenability, the fruit fly Drosophila has been serving for a lengthy period as a model organism for studying optomotor behavior as elicited by large-field horizontal motion. However, the neurons underlying the control of this behavior have not been studied in Drosophila so far. Here we report the first whole cell recordings from three cells of the horizontal system (HSN, HSE, and HSS) in the lobula plate of Drosophila. All three HS cells are tuned to large-field horizontal motion in a direction-selective way; they become excited by front-to-back motion and inhibited by back-to-front motion in the ipsilateral field of view. The response properties of HS cells such as contrast and velocity dependence are in accordance with the correlation-type model of motion detection. Neurobiotin injection suggests extensive coupling among ipsilateral HS cells and additional coupling to tangential cells that have their dendrites in the contralateral hemisphere of the brain. This connectivity scheme accounts for the complex layout of their receptive fields and explains their sensitivity both to ipsilateral and to contralateral motion. Thus the main response properties of Drosophila HS cells are strikingly similar to the responses of their counterparts in the blowfly Calliphora, although we found substantial differences with respect to their dendritic structure and connectivity. This long-awaited functional characterization of HS cells in Drosophila provides the basis for the future dissection of optomotor behavior and the underlying neural circuitry by combining genetics, physiology, and behavior.


Subject(s)
Brain/physiology , Drosophila/physiology , Interneurons/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Biotin/analogs & derivatives , Brain/cytology , CD8 Antigens/metabolism , Data Interpretation, Statistical , Dendrites/physiology , Electrophysiology , Green Fluorescent Proteins , Image Processing, Computer-Assisted , Immunohistochemistry , Microscopy, Confocal , Motion Perception/physiology , Nerve Net/physiology , Patch-Clamp Techniques , Photic Stimulation , Vision, Binocular/physiology , Visual Fields/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...