Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35230978

ABSTRACT

Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , Humans , Interleukin-10/genetics , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy
2.
Antibodies (Basel) ; 10(1)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671864

ABSTRACT

Reversible antibody self-association, while having major developability and therapeutic implications, is not fully understood or readily predictable and correctable. For a strongly self-associating humanized mAb variant, resulting in unacceptable viscosity, the monovalent affinity of self-interaction was measured in the low µM range, typical of many specific and biologically relevant protein-protein interactions. A face-to-face interaction model extending across both the heavy-chain (HC) and light-chain (LC) Complementary Determining Regions (CDRs) was apparent from biochemical and mutagenesis approaches as well as computational modeling. Light scattering experiments involving individual mAb, Fc, Fab, and Fab'2 domains revealed that Fabs self-interact to form dimers, while bivalent mAb/Fab'2 forms lead to significant oligomerization. Site-directed mutagenesis of aromatic residues identified by homology model patch analysis and self-docking dramatically affected self-association, demonstrating the utility of these predictive approaches, while revealing a highly specific and tunable nature of self-binding modulated by single point mutations. Mutagenesis at these same key HC/LC CDR positions that affect self-interaction also typically abolished target binding with notable exceptions, clearly demonstrating the difficulties yet possibility of correcting self-association through engineering. Clear correlations were also observed between different methods used to assess self-interaction, such as Dynamic Light Scattering (DLS) and Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS). Our findings advance our understanding of therapeutic protein and antibody self-association and offer insights into its prediction, evaluation and corrective mitigation to aid therapeutic development.

3.
Antibodies (Basel) ; 9(4)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266498

ABSTRACT

We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs. The VH and CH1 portion of the heavy chain (or Fd) was also efficiently expressed and yielded a stable, covalent, and reducible dimer (Fd2). Mutagenesis of all heavy chain cysteines involved in disulfide bond formation revealed that Fd2 intermolecular disulfide formation was similar to Fabs and elucidated requirements for Fd2 folding and expression. For one HC2, we solved the crystal structure of the Fd2 domain to 2.9 Å, revealing a highly symmetrical homodimer that is structurally similar to Fabs and is mediated by conserved (CH1) and variable (VH) contacts with all CDRs positioned outward for target binding. Interfacial dimer contacts revealed by the crystal structure were mutated for two HC2s and were found to dramatically affect HC2 formation while maintaining mAb bioactivity, offering a potential means to modulate novel HC2 formation through engineering. These findings indicate that human heavy-chain dimers can be secreted efficiently in the absence of light chains, may show good physicochemical properties and stability, are structurally similar to Fabs, offer insights into their mechanism of formation, and may be amenable as a novel therapeutic modality.

4.
MAbs ; 12(1): 1743053, 2020.
Article in English | MEDLINE | ID: mdl-32249670

ABSTRACT

Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering. Selection of the best antibody molecule based on biological function, efficacy, safety, and developability allows for a streamlined and successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s of molecules) implemented during early antibody generation and screening is crucial to select the best lead candidates. This involves careful assessment of critical developability parameters, combined with binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as well as an efficient data management and database system. Herein, a panel of 152 various human or humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between assays for different sets of properties were established. We demonstrated in two case studies that physicochemical properties and key assay endpoints correlate with key downstream process parameters. The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of molecules for further evaluation early in the candidate selection process. This enables any further engineering for problematic sequence attributes without affecting program timelines.


Subject(s)
Antibodies, Monoclonal , Drug Discovery/methods , Workflow , Humans , Protein Engineering/methods
5.
MAbs ; 10(2): 269-277, 2018.
Article in English | MEDLINE | ID: mdl-29283291

ABSTRACT

Murine antibody 10H10 raised against human tissue factor is unique in that it blocks the signaling pathway, and thus inhibits angiogenesis and tumor growth without interfering with coagulation. As a potential therapeutic, the antibody was humanized in a two-step procedure. Antigen-binding loops were grafted onto selected human frameworks and the resulting chimeric antibody was subjected to affinity maturation by using phage display libraries. The results of humanization were analyzed from the structural perspective through comparison of the structure of a humanized variant with the parental mouse antibody. This analysis revealed several hot spots in the framework region that appear to affect antigen binding, and therefore should be considered in human germline selection. In addition, some positions in the Vernier zone, e.g., residue 71 in the heavy chain, that are traditionally thought to be crucial appear to tolerate amino acid substitutions without any effect on binding. Several humanized variants were produced using both short and long forms of complementarity-determining region (CDR) H2 following the difference in the Kabat and Martin definitions. Comparison of such pairs indicated consistently higher thermostability of the variants with short CDR H2. Analysis of the binding data in relation to the structures singled out the ImMunoGeneTics information system® germline IGHV1-2*01 as dubious owing to two potentially destabilizing mutations as compared to the other alleles of the same germline and to other human germlines.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Antibody Affinity/physiology , Thromboplastin/immunology , Animals , Antibodies, Monoclonal, Humanized/immunology , Complementarity Determining Regions/chemistry , Humans , Mice , Models, Molecular , Protein Engineering/methods
6.
J Mol Recognit ; 25(3): 103-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22407974

ABSTRACT

The number of antibody structures co-crystallized with their respective antigens has increased rapidly in the last few years, thus offering a formidable source of information to gain insight into the structure-function relationships of this family of proteins. We have analyzed here 140 unique middle-resolution to high-resolution (<3 Å) antibody structures, including 55 in complex with proteins, 39 with peptides, and 46 with haptens. We determined (i) length variations of the hypervariable loops, (ii) number of contacts with antigen, (iii) solvent accessible area buried upon binding, (iv) location and frequency of antigen contacting residues, (v) type of residues interacting with antigens, and (vi) putative somatic mutations. Except for somatic mutations, distinctive profiles were identified for all the variables analyzed. Compared with contacts, somatic mutations occurred with less abundance at any given position and extended beyond the regions in contact, with no clear difference among antibodies that recognize different types of antigens. This observation is consistent with the fact that although antigen recognition accomplished by shape and physicochemical complementarity is selective in nature, the somatic mutation process is stochastic and selection for mutations leading to improved affinity is not directly related to contact residues. Thus, the knowledge emerging from this study enhances our understanding of the structure-function relationship in antibodies while providing valuable guidance to design libraries for antibody discovery and optimization.


Subject(s)
Antibodies/chemistry , Antigens/chemistry , Mutation , Algorithms , Amino Acid Motifs , Animals , Antibodies/genetics , Antibody Affinity , Binding Sites, Antibody , Crystallography, X-Ray , Humans , Hydrogen Bonding , Immunoglobulin Variable Region/chemistry , Mice , Models, Molecular , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Surface Properties
7.
J Mol Recognit ; 25(3): 125-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22407976

ABSTRACT

Disulfide bridges are common in the antigen-binding site from sharks (new antigen receptor) and camels (single variable heavy-chain domain, VHH), in which they confer both structural diversity and domain stability. In human antibodies, cysteine residues in the third complementarity-determining region of the heavy chain (CDR-H3) are rare but naturally encoded in the IGHD germline genes. Here, by panning a phage display library designed based on human germline genes and synthetic CDR-H3 regions against a human cytokine, we identified an antibody (M3) containing two cysteine residues in the CDR-H3. It binds the cytokine with high affinity (0.4 nM), recognizes a unique epitope on the antigen, and has a distinct neutralization profile as compared with all other antibodies selected from the library. The two cysteine residues form a disulfide bridge as determined by mass spectrometric peptide mapping. Replacing the cysteines with alanines did not change the solubility and stability of the monoclonal antibody, but binding to the antigen was significantly impaired. Three-dimensional modeling and dynamic simulations were employed to explore how the disulfide bridge influences the conformation of CDR-H3 and binding to the antigen. On the basis of these results, we envision that designing human combinatorial antibody libraries to contain intra-CDR or inter-CDR disulfide bridges could lead to identification of human antibodies with unique binding profiles.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Complementarity Determining Regions/chemistry , Disulfides/chemistry , Amino Acid Sequence , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibody Affinity , Binding Sites, Antibody , Cells, Cultured , Cysteine/chemistry , Cytokines/chemistry , Cytokines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Library , Peptide Mapping , Phosphorylation , Protein Binding , Protein Stability , Protein Structure, Secondary , STAT3 Transcription Factor/metabolism , Solubility , Transition Temperature
8.
J Mol Biol ; 398(2): 214-31, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20226193

ABSTRACT

Humanization of a potent neutralizing mouse anti-human IL-13 antibody (m836) using a method called human framework adaptation (HFA) is reported. HFA consists of two steps: human framework selection (HFS) and specificity-determining residue optimization (SDRO). The HFS step involved generation of a library of m836 antigen binding sites combined with diverse human germline framework regions (FRs), which were selected based on structural and sequence similarities between mouse variable domains and a repertoire of human antibody germline genes. SDRO consisted of diversifying specificity-determining residues and selecting variants with improved affinity using phage display. HFS of m836 resulted in a 5-fold loss of affinity, whereas SDRO increased the affinity up to 100-fold compared to the HFS antibody. Crystal structures of Fabs in complex with IL-13 were obtained for m836, the HFS variant chosen for SDRO, and one of the highest-affinity SDRO variants. Analysis of the structures revealed that major conformational changes in FR-H1 and FR-H3 occurred after FR replacement, but none of them had an evident direct impact on residues in contact with IL-13. Instead, subtle changes affected the V(L)/V(H) (variable-light domain/variable-heavy domain) interface and were likely responsible for the 5-fold decreased affinity. After SDRO, increased affinity resulted mainly from rearrangements in hydrogen-bonding pattern at the antibody/antigen interface. Comparison with m836 putative germline genes suggested interesting analogies between natural affinity maturation and the engineering process that led to the potent HFA anti-human IL-13 antibody.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoglobulin Variable Region/immunology , Interleukin-13/antagonists & inhibitors , Interleukin-13/immunology , Protein Engineering/methods , Recombinant Fusion Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antigen-Antibody Reactions , Binding Sites , Crystallography, X-Ray , Humans , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Mice , Molecular Sequence Data , Peptide Library , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...