Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Genomics ; 7: 310, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17156450

ABSTRACT

BACKGROUND: Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogenesis on rice plants at the transcriptome level. To identify all the expressed genes encoded in the fungal genome, we have analyzed the mycelium and appressorium transcriptomes using massively parallel signature sequencing (MPSS), robust-long serial analysis of gene expression (RL-SAGE) and oligoarray methods. RESULTS: The MPSS analyses identified 12,531 and 12,927 distinct significant tags from mycelia and appressoria, respectively, while the RL-SAGE analysis identified 16,580 distinct significant tags from the mycelial library. When matching these 12,531 mycelial and 12,927 appressorial significant tags to the annotated CDS, 500 bp upstream and 500 bp downstream of CDS, 6,735 unique genes in mycelia and 7,686 unique genes in appressoria were identified. A total of 7,135 mycelium-specific and 7,531 appressorium-specific significant MPSS tags were identified, which correspond to 2,088 and 1,784 annotated genes, respectively, when matching to the same set of reference sequences. Nearly 85% of the significant MPSS tags from mycelia and appressoria and 65% of the significant tags from the RL-SAGE mycelium library matched to the M. grisea genome. MPSS and RL-SAGE methods supported the expression of more than 9,000 genes, representing over 80% of the predicted genes in M. grisea. About 40% of the MPSS tags and 55% of the RL-SAGE tags represent novel transcripts since they had no matches in the existing M. grisea EST collections. Over 19% of the annotated genes were found to produce both sense and antisense tags in the protein-coding region. The oligoarray analysis identified the expression of 3,793 mycelium-specific and 4,652 appressorium-specific genes. A total of 2,430 mycelial genes and 1,886 appressorial genes were identified by both MPSS and oligoarray. CONCLUSION: The comprehensive and deep transcriptome analysis by MPSS and RL-SAGE methods identified many novel sense and antisense transcripts in the M. grisea genome at two important growth stages. The differentially expressed transcripts that were identified, especially those specifically expressed in appressoria, represent a genomic resource useful for gaining a better understanding of the molecular basis of M. grisea pathogenicity. Further analysis of the novel antisense transcripts will provide new insights into the regulation and function of these genes in fungal growth, development and pathogenesis in the host plants.


Subject(s)
Gene Expression Regulation, Fungal , Magnaporthe/genetics , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , DNA, Fungal/genetics , Expressed Sequence Tags , Genetic Techniques , Magnaporthe/pathogenicity , Mycelium/genetics , RNA, Antisense/genetics
2.
J Virol Methods ; 136(1-2): 147-53, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16777241

ABSTRACT

The development of novel strategies against plant viral diseases relies on a better understanding of molecular virus-host interactions. Here, we report an easy, efficient and reproducible protocol for Arabidopsis protoplast isolation and transfection to study the infection and replication of a potyvirus, Plum pox virus (PPV). Macerozyme and cellulose were used to release protoplasts from Arabidopsis leaf tissues, and polyethylene glycol-mediated DNA uptake was employed for transfection of a PPV infectious clone. Protoplast viability was monitored by fluorescein diacetate staining, and transfection efficiency was estimated by transient expression of the green fluorescent protein. The protocol allowed production of 95% viable mesophyll protoplasts and a successful transfection rate of 35%. The system was used further in a time-course experiment to investigate PPV viral RNA accumulation. It was found that 3 h post-transfection (hpt) in the transfected protoplasts viral RNA increased by about 150-fold and progressively accumulated to reach the maximum at 12 hpt. Viral RNA then decreased dramatically at 24 hpt reaching 40% of its peak level. Considering the availability of the whole genome microarrays, and other genomic resources of Arabidopsis, the synchronized single-cell (protoplast) infection system will be useful for elucidating early molecular events associated with PPV infection.


Subject(s)
Arabidopsis/genetics , Plant Diseases/virology , Plum Pox Virus/genetics , Arabidopsis/virology , Cellulase/metabolism , DNA, Viral/metabolism , Fluoresceins/pharmacology , Fluorescent Dyes/pharmacology , Genes, Reporter , Green Fluorescent Proteins/genetics , Kinetics , Microscopy, Confocal , Plant Diseases/genetics , Plant Leaves , Protoplasts/virology , RNA, Viral/biosynthesis , Staining and Labeling/methods , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...