Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 125(8): 934-942, 2021 04 28.
Article in English | MEDLINE | ID: mdl-32867865

ABSTRACT

Sweetened beverages are mainly consumed cold and various processes are activated in response to external temperature variations. However, the effect of internal temperature variations through the ingestion of cold beverages is far from clear. Two experiments were conducted to investigate the effect of beverage temperature on body composition. Sprague-Dawley rats (5-6-week-old males) had free access to food and beverage for 8 weeks. Energy intake, body weight and body composition were monitored. In Expt 1, two groups of rats (n 9) consumed water at room temperature (NW about 22°C) or cold (CW about 4°C). In Expt 2, rats were offered room-temperature (N) or cold (C) sweetened water (10 % sucrose CSu (n 7) and NSu (n 8); or 0·05 % acesulfame K CAk (n 6) and NAk (n 8)) for 12 h, followed by plain water. Our results show that in Expt 1, CW had higher lean body mass (P < 0·001) and lower body fat gain (P = 0·004) as compared with NW. In Expt 2, body weight (P = 0·013) and fat (P ≤ 0·001) gains were higher in the non-energetic sweetened groups, while lean body mass was not affected by the type of sweeteners or temperature. In conclusion, cold water ingestion improved lean body mass gain and decreased fat gain because of increased energy expenditure, while non-energetic sweetener (acesulfame K) increased body fat gain due to improved energy efficiency. Internal cold exposure failed to increase energy intake in contrast to that of external cold exposure.


Subject(s)
Body Composition , Drinking Water , Sugar-Sweetened Beverages , Adipose Tissue , Animals , Body Mass Index , Body Weight , Dietary Sucrose , Energy Intake , Energy Metabolism , Male , Non-Nutritive Sweeteners , Rats , Rats, Sprague-Dawley , Sucrose , Temperature
2.
Br J Nutr ; 126(7): 1110-1120, 2021 10 14.
Article in English | MEDLINE | ID: mdl-33298199

ABSTRACT

P ingestion has been found to alter energy balance, while regular physical exercise (E) was reported to be associated with energy compensation. However, it is not clear whether dietary P would affect energy compensation following structured E. Two experiments were performed, low P (LP) (0·1, 0·2 and 0·3 %P) and high P (HP) (0·3 , 0·6 and 1·2 %P) diets. In each experiment, male rats were randomly divided into three groups (n 8), in which a sedentary or a moderate-intensity exercise routine (30 min 5 d a week) was implemented. Energy intake (EI); efficiency and stores; body measures and total energy expenditure (TEEx) were monitored for 6 weeks. In the LP experiment, EI and weight gain were the lowest in the 0·1 and 0·2 %P as compared with the 0·3 %P. In the HP experiment, EI was highest in the high P (0·6 and 1·2 %P) groups, while weight gain was reduced. In both experiments, exercise was able to reduce body fat accumulation and to maintain a higher % lean body mass. In the LP diets experiment, the similarity in TEEx between the sedentary and exercising groups suggests the probability of a reduction in normal daily activities, which indicates the presence of compensation for the energy expended during exercise by a subsequent reduction in EE. In contrast, the elevated TEEx in the HP exercising groups (0·6 and 1·2 %P) argue against the presence of energy compensation. In conclusion, high dietary P decreases the body's capability to compensate for the energy deficit induced by E, consequently maintaining an elevated TEEx.


Subject(s)
Energy Metabolism , Phosphorus, Dietary , Physical Conditioning, Animal , Animals , Body Composition , Energy Intake , Male , Phosphorus, Dietary/administration & dosage , Rats , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...