Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 73(4): 1107-13, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17194838

ABSTRACT

The commercial probiotic Streptococcus salivarius strain K12 is the prototype of those S. salivarius strains that are the most strongly inhibitory in a standardized test of streptococcal bacteriocin production and has been shown to produce the 2,368-Da salivaricin A2 (SalA2) and the 2,740-Da salivaricin B (SboB) lantibiotics. The previously uncharacterized SboB belongs to the type AII class of lantibiotic bacteriocins and is encoded by an eight-gene cluster. The genetic loci encoding SalA2 and SboB in strain K12 have been fully characterized and are localized to nearly adjacent sites on pSsal-K12, a 190-kb megaplasmid. Of 61 strongly inhibitory strains of S. salivarius, 19 (31%) were positive for the sboB structural gene. All but one (strain NR) of these 19 strains were also positive for salA2, and in each of these cases of double positivity, the two loci were separated by fewer than 10 kb. This is the first report of a single streptococcus strain producing two distinct lantibiotics.


Subject(s)
Genetic Linkage/genetics , Plasmids/genetics , Streptococcus/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Molecular Sequence Data , Molecular Weight , Streptococcus/metabolism , Transformation, Bacterial
2.
Microbiology (Reading) ; 152(Pt 7): 1991-2001, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16804174

ABSTRACT

Dysgalacticin is a novel bacteriocin produced by Streptococcus dysgalactiae subsp. equisimilis strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen Streptococcus pyogenes. Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, dysA, is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural dysA variants containing conservative amino acid substitutions were also detected by sequence analyses of dysA elements from S. dysgalactiae strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by Escherichia coli confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of in silico secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from S. pyogenes, indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.


Subject(s)
Bacteriocins/biosynthesis , Plasmids , Streptococcus/metabolism , Amino Acid Sequence , Bacteriocins/chemistry , Bacteriocins/genetics , Bacteriocins/isolation & purification , Base Sequence , Disulfides/chemistry , Escherichia coli/genetics , Molecular Sequence Data , Recombinant Proteins/biosynthesis
3.
Appl Environ Microbiol ; 72(2): 1459-66, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16461700

ABSTRACT

Salivaricin A (SalA), the first Streptococcus salivarius lantibiotic to be characterized, appears to be inhibitory to most Streptococcus pyogenes strains. A variant of the SalA structural gene (salA1) is present in more than 90% of S. pyogenes strains, but only strains of M serotype 4 and T pattern 4 produce the biologically active peptide. The present study identifies four additional variants (salA2 to salA5) of the SalA structural gene and demonstrates that each of the corresponding inhibitory peptides (SalA2 to SalA5) is produced in vitro. These variants appear to be similar to SalA and SalA1 in their inhibitory activity against Micrococcus luteus and in their ability to act as inducers of SalA production. It had previously been shown that S. pyogenes strain SF370 had a deletion (of approximately 2.5 kb) in the salM and salT genes of the salA1 locus. In the present study, several additional characteristic deletions within the salA1 loci were identified. S. pyogenes strains of the same M serotype all share the same salA1 locus structure. Since S. salivarius is a predominant member of the normal oral flora of healthy humans, strains producing anti-S. pyogenes lantibiotics, such as SalA, may have excellent potential for use as oral probiotics. In the present study, we have used a highly specific SalA induction system to directly detect the presence of SalA in the saliva of humans who either naturally harbor populations of SalA-producing S. salivarius or who have been colonized with the SalA2-producing probiotic S. salivarius K12.


Subject(s)
Bacteriocins/biosynthesis , Saliva/chemistry , Saliva/microbiology , Streptococcus/metabolism , Amino Acid Sequence , Bacterial Proteins/analysis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacteriocins/analysis , Bacteriocins/genetics , Bacteriocins/pharmacology , Base Sequence , DNA, Bacterial/genetics , Genes, Bacterial , Genetic Variation , Humans , In Vitro Techniques , Molecular Sequence Data , Probiotics , Species Specificity , Streptococcus/classification , Streptococcus/genetics , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...