Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Evol ; 190: 103499, 2024 05.
Article in English | MEDLINE | ID: mdl-38569444

ABSTRACT

Research suggests that recent modern humans have gracile skeletons in having low trabecular bone volume fraction (BV/TV) and that gracilization of the skeleton occurred in the last 10,000 years. This has been attributed to a reduction in physical activity in the Holocene. However, there has been no thorough sampling of BV/TV in Pleistocene humans due to limited access to high resolution images of fossil specimens. Therefore, our study investigates the gracilization of BV/TV in Late Pleistocene humans and recent (Holocene) modern humans to improve our understanding of the emergence of gracility. We used microcomputed tomography to measure BV/TV in the femora, humeri and metacarpals of a sample of Late Pleistocene humans from Dolní Vestonice (Czech Republic, ∼26 ka, n = 6) and Ohalo II (Israel, ∼19 ka, n = 1), and a sample of recent humans including farming groups (n = 39) and hunter-gatherers (n = 6). We predicted that 1) Late Pleistocene humans would exhibit greater femoral and humeral head BV/TV compared with recent humans and 2) among recent humans, metacarpal head BV/TV would be greater in hunter-gatherers compared with farmers. Late Pleistocene humans had higher BV/TV compared with recent humans in both the femur and humerus, supporting our first prediction, and consistent with previous findings that Late Pleistocene humans are robust as compared to recent humans. However, among recent humans, there was no significant difference in BV/TV in the metacarpals between the two subsistence groups. The results highlight the similarity in BV/TV in the hand of two human groups from different geographic locales and subsistence patterns and raise questions about assumptions of activity levels in archaeological populations and their relationships to trabecular BV/TV.


Subject(s)
Cancellous Bone , Hominidae , Animals , Humans , X-Ray Microtomography , Femur , Lower Extremity
2.
J Hum Evol ; 138: 102702, 2020 01.
Article in English | MEDLINE | ID: mdl-31805487

ABSTRACT

Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) both knuckle-walk in adulthood but are known to develop their locomotor strategies differently. Using dentally defined age-groups of both Pan and Gorilla and behavioral data from the literature, this study presents an internal trabecular bone approach to better understand the morphological ontogeny of knuckle-walking in these taxa. Capitate and third metacarpal bones were scanned by µCT at 23-43 µm resolution with scaled volumes of interest placed centrally within the head of the capitate and base of the third metacarpal. Trabecular measures related to activity level (size-adjusted bone volume/total volume, trabecular number, and bone surface area/bone volume) met expectations of decreasing through ontogeny in both taxa. Degree of anisotropy did not show statistical support for predicted species differences, but this may be due to the sample size as observed changes through ontogeny reflect expected trends in the capitate. Analyses of principal trabecular orientation corroborated known behavioral differences related to variation of hand use in these taxa, but only Pan showed directional patterning associated with suggested wrist posture. Assessment of allometry showed that the trabecular bone of larger animals is characterized by fewer and thinner trabeculae relative to bone size. In combination, these findings confirm the efficacy of trabecular bone in reflecting locomotor ontogeny differences between closely related taxa. These techniques show promise for use within the hominin fossil record, particularly for taxa hypothesized to be arboreal in some capacity.


Subject(s)
Cancellous Bone/anatomy & histology , Capitate Bone/anatomy & histology , Gorilla gorilla/anatomy & histology , Metacarpal Bones/anatomy & histology , Pan troglodytes/anatomy & histology , Animals , Gait , Posture
3.
Am J Primatol ; 79(12)2017 12.
Article in English | MEDLINE | ID: mdl-28926116

ABSTRACT

Dental microwear textures have been examined for a broad range of extant primates to assess their efficacy for reconstructing diets of fossil species. To date though, no dental microwear texture data have been published for pitheciid molars, despite reported variation in degree of sclerocarpy and, by extension, the fracture properties of foods these platyrrhines eat. While all pitheciids eat hard or tough seeds, Chiropotes and Pithecia have been documented to consume more than Callicebus. In this study, we explored whether measures of molar microwear texture complexity discriminate taxa following variation in reliance upon seeds, and whether dispersion among variables is greatest in Callicebus, which has the most variable diet. Here we report results for a study of microwear textures on M2 "Phase II" facets of Ch. satanas (N = 14), P. irrorata (N = 8), and Ca. moloch (N = 24) from the Brazilian Amazon (Oriximina, UHE Samuel, and Taperinha, respectively). Textures examined using a scanning confocal profiler showed significant differences in central tendencies for three measures: mean dale area (Sda), anisotropy (Str), and heterogeneity (HAsfc9 ). Ten measures showed significant differences in dispersion, with Callicebus being significantly more variable in eight of those ten. These results demonstrate that the pitheciids with different morphological adaptations and dietary reliance on seeds differ in their dental microwear textures, though less than initially hypothesized. Measures of dispersion, especially, show potential for identifying dietary variability.


Subject(s)
Diet , Molar/anatomy & histology , Pitheciidae/anatomy & histology , Animals , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...