Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38832746

ABSTRACT

Alkali metal doping of multi-walled carbon nanotubes is of great interest, both fundamentally to explore the effect of dopants on quasi-one-dimensional electrical systems and for energy applications such as alkali metal storage. We present an investigation with complementary photoemission and Raman spectroscopies, fully carried out in an ultra-high vacuum, to unveil the electronic and vibrational response of a forest of highly aligned multi-walled carbon nanotubes by in situ potassium doping. The charge donation by the alkali adatoms induces a plasmon mode, and the density of states undergoes an energy shift consistent with electron donation and band filling of the multi-walled carbon nanotube band structure. The π-states in the valence band and the Raman peaks unveil an evolution that can be ascribed to charge donation and partially to a tensile strain exerted by the K adatoms on the carbon lattice. All these effects are thermally reversible, fostering these materials as a potential system for electronic charge harvesting.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985974

ABSTRACT

The emergence of multidrug-resistant bacteria represents a growing threat to public health, and it calls for the development of alternative antibacterial approaches not based on antibiotics. Here, we propose vertically aligned carbon nanotubes (VA-CNTs), with a properly designed nanomorphology, as effective platforms to kill bacteria. We show, via a combination of microscopic and spectroscopic techniques, the ability to tailor the topography of VA-CNTs, in a controlled and time-efficient manner, by means of plasma etching processes. Three different varieties of VA-CNTs were investigated, in terms of antibacterial and antibiofilm activity, against Pseudomonas aeruginosa and Staphylococcus aureus: one as-grown variety and two varieties receiving different etching treatments. The highest reduction in cell viability (100% and 97% for P. aeruginosa and S. aureus, respectively) was observed for the VA-CNTs modified using Ar and O2 as an etching gas, thus identifying the best configuration for a VA-CNT-based surface to inactivate both planktonic and biofilm infections. Additionally, we demonstrate that the powerful antibacterial activity of VA-CNTs is determined by a synergistic effect of both mechanical injuries and ROS production. The possibility of achieving a bacterial inactivation close to 100%, by modulating the physico-chemical features of VA-CNTs, opens up new opportunities for the design of self-cleaning surfaces, preventing the formation of microbial colonies.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202532

ABSTRACT

Highly aligned multi-wall carbon nanotubes were investigated with scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after bombardment performed using noble gas ions of different masses (argon, neon and helium), in an ultra-high-vacuum (UHV) environment. Ion irradiation leads to change in morphology, deformation of the carbon (C) honeycomb lattice and different structural defects in multi-wall carbon nanotubes. One of the major effects is the production of bond distortions, as determined by micro-Raman and micro-X-ray photoelectron spectroscopy. We observe an increase in sp3 distorted bonds at higher binding energy with respect to the expected sp2 associated signal of the carbon 1s core level, and increase in dangling bonds. Furthermore, the surface damage as determined by the X-ray photoelectron spectroscopy carbon 1s core level is equivalent upon bombarding with ions of different masses, while the impact and density of defects in the lattice of the MWCNTs as determined by micro-Raman are dependent on the bombarding ion mass; heavier for helium ions, lighter for argon ions. These results on the controlled increase in sp3 distorted bonds, as created on the multi-wall carbon nanotubes, open new functionalization prospects to improve and increase atomic hydrogen uptake on ion-bombarded multi-wall carbon nanotubes.

4.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685165

ABSTRACT

The quest for surfaces able to interface cells and modulate their functionality has raised, in recent years, the development of biomaterials endowed with nanocues capable of mimicking the natural extracellular matrix (ECM), especially for tissue regeneration purposes. In this context, carbon nanotubes (CNTs) are optimal candidates, showing dimensions and a morphology comparable to fibril ECM constituents. Moreover, when immobilized onto surfaces, they demonstrated outstanding cytocompatibility and ease of chemical modification with ad hoc functionalities. In this study, we interface porcine aortic valve interstitial cells (pVICs) to multi-walled carbon nanotube (MWNT) carpets, investigating the impact of surface nano-morphology on cell properties. The results obtained indicate that CNTs significantly affect cell behavior in terms of cell morphology, cytoskeleton organization, and mechanical properties. We discovered that CNT carpets appear to maintain interfaced pVICs in a sort of "quiescent state", hampering cell activation into a myofibroblasts-like phenotype morphology, a cellular evolution prodromal to Calcific Aortic Valve Disease (CAVD) and characterized by valve interstitial tissue stiffening. We found that this phenomenon is linked to CNTs' ability to alter cell tensional homeostasis, interacting with cell plasma membranes, stabilizing focal adhesions and enabling a better strain distribution within cells. Our discovery contributes to shedding new light on the ECM contribution in modulating cell behavior and will open the door to new criteria for designing nanostructured scaffolds to drive cell functionality for tissue engineering applications.

5.
Dev Neurobiol ; 80(9-10): 316-331, 2020 09.
Article in English | MEDLINE | ID: mdl-31314946

ABSTRACT

The increasing engineering of carbon-based nanomaterials as components of neuroregenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favor dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned entorhinal-hippocampal complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fiber sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering.


Subject(s)
Dentate Gyrus/cytology , Dentate Gyrus/physiology , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Nanotubes, Carbon , Animals , Animals, Newborn , Microscopy, Electron, Scanning/methods , Organ Culture Techniques/methods , Rats , Rats, Wistar
6.
Adv Biosyst ; 3(5): e1800286, 2019 05.
Article in English | MEDLINE | ID: mdl-32627414

ABSTRACT

Carbon nanotube (CNT)-modified surfaces unequivocally demonstrate their biocompatibility and ability to boost the electrical activity of neuronal cells cultured on them. Reasons for this effect are still under debate. However, the intimate contact at the membrane level between these thready nanostructures and cells, in combination with their unique electrical properties, seems to play an important role. The entire existing literature exploiting the effect of CNTs on modulating cellular behavior deals with cell cultures grown on purified multiwalled carbon nanotubes (MWNTs) deposited on a supporting surface via drop-casting or mechanical entrapment. Here, for the first time, it is demonstrated that CNTs directly grown on a supporting silicon surface by a chemical vapor deposition (CVD)-assisted technique have the same effect. It is shown that primary neuronal cells developed above a carpet of CVD CNTs form a healthy and functional network. The resulting neuronal network shows increased electrical activity when compared to a similar network developed on a control glass surface. The low cost and high versatility of the here presented CVD-based synthesis process, together with the possibility to create on supporting substrate patterns of any arbitrary shape of CNTs, open up new opportunities for brain-machine interfaces or neuroprosthetic devices.


Subject(s)
Brain-Computer Interfaces , Hippocampus/metabolism , Nanotubes, Carbon , Nerve Net/metabolism , Neurons/metabolism , Animals , Hippocampus/cytology , Nerve Net/cytology , Neurons/cytology , Rats
7.
Nanomedicine (Lond) ; 11(19): 2547-63, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27618972

ABSTRACT

AIM: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. MATERIALS & METHODS: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. RESULTS: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. CONCLUSION: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.


Subject(s)
Elastomers/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Neurons/physiology , Polyhydroxyalkanoates/chemistry , Animals , Biocompatible Materials , Calcium/chemistry , Calcium/metabolism , Cell Adhesion , Cell Culture Techniques , Cell Survival , Electric Conductivity , Electric Stimulation , Feasibility Studies , Humans , Mechanical Phenomena , Mesencephalon/cytology , Particle Size , Rats, Sprague-Dawley , Surface Properties , Tissue Engineering
8.
ACS Nano ; 10(4): 4459-71, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27030936

ABSTRACT

Graphene offers promising advantages for biomedical applications. However, adoption of graphene technology in biomedicine also poses important challenges in terms of understanding cell responses, cellular uptake, or the intracellular fate of soluble graphene derivatives. In the biological microenvironment, graphene nanosheets might interact with exposed cellular and subcellular structures, resulting in unexpected regulation of sophisticated biological signaling. More broadly, biomedical devices based on the design of these 2D planar nanostructures for interventions in the central nervous system require an accurate understanding of their interactions with the neuronal milieu. Here, we describe the ability of graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability.


Subject(s)
Brain/physiology , Graphite/chemistry , Nanostructures/chemistry , Nerve Net/physiology , Neurons/physiology , Oxides/chemistry , Animals , Calcium/metabolism , Cell Culture Techniques , Down-Regulation , Fluorescent Antibody Technique , Optical Imaging , Particle Size , Rats , Surface Properties , Synapses/physiology
9.
J Synchrotron Radiat ; 23(1): 132-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26698055

ABSTRACT

The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...