Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2024): 20240153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835272

ABSTRACT

Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.


Subject(s)
Phenotype , Predatory Behavior , Animals , Gene Regulatory Networks
2.
Nat Commun ; 14(1): 8439, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114491

ABSTRACT

Plasticity is a widespread feature of development, enabling phenotypic change based on the environment. Although the evolutionary loss of plasticity has been linked both theoretically and empirically to increased rates of phenotypic diversification, molecular insights into how this process might unfold are generally lacking. Here, we show that a regulator of nongenetic inheritance links evolutionary loss of plasticity in nature to changes in plasticity and morphology as selected in the laboratory. Across nematodes of Diplogastridae, which ancestrally had a polyphenism, or discrete plasticity, in their feeding morphology, we use molecular evolutionary analyses to screen for change associated with independent losses of plasticity. Having inferred a set of ancestrally polyphenism-biased genes from phylogenetically informed gene-knockouts and gene-expression comparisons, selection signatures associated with plasticity's loss identify the histone H3K4 di/monodemethylase gene spr-5/LSD1/KDM1A. Manipulations of this gene affect both sensitivity and variation in plastic morphologies, and artificial selection of manipulated lines drive multigenerational shifts in these phenotypes. Our findings thus give mechanistic insight into how traits are modified as they traverse the continuum of greater to lesser environmental sensitivity.


Subject(s)
Biological Evolution , Nematoda , Animals , Phenotype , Gene Expression , Histone Demethylases/genetics
3.
Proc Natl Acad Sci U S A ; 120(32): e2308816120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37527340

ABSTRACT

Polyphenism is a type of developmental plasticity that translates continuous environmental variability into discontinuous phenotypes. Such discontinuity likely requires a switch between alternative gene-regulatory networks, a principle that has been borne out by mechanisms found to promote morph-specific gene expression. However, whether robustness is required to execute a polyphenism decision has awaited testing at the molecular level. Here, we used a nematode model for polyphenism, Pristionchus pacificus, to identify the molecular regulatory factors that ensure the development of alternative forms. This species has a dimorphism in its adult feeding structures, specifically teeth, which are a morphological novelty that allows predation on other nematodes. Through a forward genetic screen, we determined that a duplicate homolog of the Mediator subunit MDT-15/MED15, P. pacificus MDT-15.1, is necessary for the polyphenism and the robustness of the resulting phenotypes. This transcriptional coregulator, which has a conserved role in metabolic responses to nutritional stress, coordinates these processes with its effects on this diet-induced polyphenism. Moreover, this MED15 homolog genetically interacts with two nuclear receptors, NHR-1 and NHR-40, to achieve dimorphism: Single and double mutants for these three factors result in morphologies that together produce a continuum of forms between the extremes of the polyphenism. In summary, we have identified a molecular regulator that confers discontinuity to a morphological polyphenism, while also identifying a role for MED15 as a plasticity effector.


Subject(s)
Rhabditida , Tooth , Animals , Receptors, Cytoplasmic and Nuclear/genetics , Rhabditida/physiology , Phenotype , Gene Regulatory Networks
4.
J Nematol ; 54(1): 20220028, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36060476

ABSTRACT

Two new species of Tokorhabditis, T. tauri n. sp. and T. atripennis n. sp., which were isolated from multiple Onthophagus species in North America and from O. atripennis in Japan, respectively, are described. The new species are each diagnosed by characters of the male tail and genitalia, in addition to molecular barcode differences that were previously reported. The description of T. tauri n. sp. expands the suite of known nematode associates of O. taurus, promoting ecological studies using a beetle that is an experimental model for insect-nematode-microbiota interactions in a semi-natural setting. Furthermore, our description of a third Tokorhabditis species, T. atripennis n. sp., sets up a comparative model for such ecological interactions, as well as other phenomena as previously described for T. tufae, including maternal care through obligate vivipary, the evolution of reproductive mode, and extremophilic living.

5.
Evol Dev ; 24(1-2): 16-36, 2022 03.
Article in English | MEDLINE | ID: mdl-35239990

ABSTRACT

Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three-dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine-structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left-right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans.


Subject(s)
Caenorhabditis elegans , Nematoda , Animals , Biological Evolution , Caenorhabditis elegans/physiology , Nematoda/anatomy & histology , Nematoda/physiology , Predatory Behavior
6.
Front Integr Neurosci ; 16: 805061, 2022.
Article in English | MEDLINE | ID: mdl-35210995

ABSTRACT

Resource polyphenism-the occurrence of environmentally induced, discrete, and intraspecific morphs showing differential niche use-is taxonomically widespread and fundamental to the evolution of ecological function where it has arisen. Despite longstanding appreciation for the ecological and evolutionary significance of resource polyphenism, only recently have its proximate mechanisms begun to be uncovered. Polyphenism switches, especially those influencing and influenced by trophic interactions, offer a route to integrating proximate and ultimate causation in studies of plasticity, and its potential influence on evolution more generally. Here, we use the major events in generalized polyphenic development as a scaffold for linking the molecular mechanisms of polyphenic switching with potential evolutionary outcomes of polyphenism and for discussing challenges and opportunities at each step in this process. Not only does the study of resource polyphenism uncover interesting details of discrete plasticity, it also illuminates and informs general principles at the intersection of development, ecology, and evolution.

7.
Genetics ; 220(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-35088845

ABSTRACT

Nematodes show an extraordinary diversity of mouth structures and strikingly different feeding strategies, which has enabled an invasion of all ecosystems. However, nearly nothing is known about the structural and molecular architecture of the nematode mouth (stoma). Pristionchus pacificus is an intensively studied nematode that exhibits unique life history traits, including predation, teeth-like denticle formation, and mouth-form plasticity. Here, we used a large-scale genetic screen to identify genes involved in mouth formation. We identified Ppa-dpy-6 to encode a Mucin-type hydrogel-forming protein that is macroscopically involved in the specification of the cheilostom, the anterior part of the mouth. We used a recently developed protocol for geometric morphometrics of miniature animals to characterize these defects further and found additional defects that affect mouth form, shape, and size resulting in an overall malformation of the mouth. Additionally, Ppa-dpy-6 is shorter than wild-type with a typical Dumpy phenotype, indicating a role in the formation of the external cuticle. This concomitant phenotype of the cheilostom and cuticle provides the first molecular support for the continuity of these structures and for the separation of the cheilostom from the rest of the stoma. In Caenorhabditis elegans, dpy-6 was an early mapping mutant but its molecular identity was only determined during genome-wide RNAi screens and not further investigated. Strikingly, geometric morphometric analysis revealed previously unrecognized cheilostom and gymnostom defects in Cel-dpy-6 mutants. Thus, the Mucin-type protein DPY-6 represents to the best of our knowledge, the first protein involved in nematode mouth formation with a conserved role in cuticle deposition. This study opens new research avenues to characterize the molecular composition of the nematode mouth, which is associated with extreme ecological diversification.


Subject(s)
Mucins , Nematoda , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Ecosystem , Mouth , Mucins/genetics , Mucins/metabolism , Nematoda/genetics
8.
Sci Rep ; 11(1): 16470, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389775

ABSTRACT

Life in extreme environments is typically studied as a physiological problem, although the existence of extremophilic animals suggests that developmental and behavioral traits might also be adaptive in such environments. Here, we describe a new species of nematode, Tokorhabditis tufae, n. gen., n. sp., which was discovered from the alkaline, hypersaline, and arsenic-rich locale of Mono Lake, California. The new species, which offers a tractable model for studying animal-specific adaptations to extremophilic life, shows a combination of unusual reproductive and developmental traits. Like the recently described sister group Auanema, the species has a trioecious mating system comprising males, females, and self-fertilizing hermaphrodites. Our description of the new genus thus reveals that the origin of this uncommon reproductive mode is even more ancient than previously assumed, and it presents a new comparator for the study of mating-system transitions. However, unlike Auanema and almost all other known rhabditid nematodes, the new species is obligately live-bearing, with embryos that grow in utero, suggesting maternal provisioning during development. Finally, our isolation of two additional, molecularly distinct strains of the new genus-specifically from non-extreme locales-establishes a comparative system for the study of extremophilic traits in this model.


Subject(s)
Extremophiles/physiology , Rhabditida/physiology , Adaptation, Physiological , Animals , Extremophiles/metabolism , Extremophiles/ultrastructure , Female , Male , Microscopy , Microscopy, Electron, Scanning , Models, Animal , Phylogeny , Reproduction/physiology , Rhabditida/anatomy & histology , Rhabditida/metabolism , Rhabditida/ultrastructure , Sex Ratio
9.
Mol Biol Evol ; 38(2): 331-343, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32931588

ABSTRACT

Developmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus. In this species, individuals produce alternative forms of a novel trait-moveable teeth, which in one morph enable predatory feeding-in response to environmental cues. To identify the origins of polyphenism network components, we independently inferred coexpression modules for more conserved transcriptional responses, including in an ancestrally nonpolyphenic nematode species. Further, through genome-wide analyses of these components across the nematode family (Diplogastridae) in which the polyphenism arose, we reconstructed how network components have changed. To achieve this, we assembled and resolved the phylogenetic context for five genomes of species representing the breadth of Diplogastridae and a hypothesized outgroup. We found that gene networks instructing alternative forms arose from ancestral plastic responses to environment, specifically starvation-induced metabolism and the formation of a conserved diapause (dauer) stage. Moreover, loci from rapidly evolving gene families were integrated into these networks with higher connectivity than throughout the rest of the P. pacificus transcriptome. In summary, we show that the modular regulatory outputs of a polyphenic response evolved through the integration of conserved plastic responses into networks with genes of high evolutionary turnover.


Subject(s)
Biological Evolution , Caenorhabditis elegans/genetics , Gene Regulatory Networks , Phenotype , Animals , Genome, Helminth , Multigene Family , Phylogeny
10.
Proc Biol Sci ; 287(1921): 20192595, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32098612

ABSTRACT

Polyphenism is a form of developmental plasticity that transduces environmental cues into discontinuous, often disparate phenotypes. In some cases, polyphenism has been attributed to facilitating morphological diversification and even the evolution of novel traits. However, this process is predicated on the origins and evolutionary maintenance of genetic mechanisms that specify alternate developmental networks. When and how regulatory loci arise and change, specifically before and throughout the history of a polyphenism, is little understood. Here, we establish a phylogenetic and comparative molecular context for two dynamically evolving genes, eud-1 and seud-1, which regulate polyphenism in the nematode Pristionchus pacificus. This species is dimorphic in its adult feeding-structures, allowing individuals to become microbivores or facultative predators depending on the environment. Although polyphenism regulation is increasingly well understood in P. pacificus, the polyphenism is far older than this species and has diversified morphologically to enable an array of ecological functions across polyphenic lineages. To bring this taxonomic diversity into a comparative context, we reconstructed the histories of eud-1 and seud-1 relative to the origin and diversification of polyphenism, finding that homologues of both genes have undergone lineage-specific radiations across polyphenic taxa. Further, we detected signatures of episodic diversifying selection on eud-1, particularly in early diplogastrid lineages. Lastly, transgenic rescue experiments suggest that the gene's product has functionally diverged from its orthologue's in a non-polyphenic outgroup. In summary, we provide a comparative framework for the molecular components of a plasticity switch, enabling studies of how polyphenism, its regulation, and ultimately its targets evolve.


Subject(s)
Biological Evolution , Rhabditida , Animals , Genetic Speciation , Phenotype , Phylogeny
11.
J Nematol ; 51: 1-4, 2019.
Article in English | MEDLINE | ID: mdl-31814372

ABSTRACT

Halicephalobus is a clade of small, exclusively parthenogenic nematodes that have sometimes colonized remarkable habitats. Given their phylogenetic closeness to other parthenogenic panagrolaimid species with which they likely share a sexually reproducing ancestor, Halicephalobus species provide a point of comparison for parallelisms in the evolution of asexuality. Here, we present a draft genome of a putatively new species of Halicephalobus isolated from termites in Japan.Halicephalobus is a clade of small, exclusively parthenogenic nematodes that have sometimes colonized remarkable habitats. Given their phylogenetic closeness to other parthenogenic panagrolaimid species with which they likely share a sexually reproducing ancestor, Halicephalobus species provide a point of comparison for parallelisms in the evolution of asexuality. Here, we present a draft genome of a putatively new species of Halicephalobus isolated from termites in Japan.

12.
Mol Biol Evol ; 36(11): 2387-2399, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31364718

ABSTRACT

The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs-microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty-as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor NHR-40, physically binds to promoters with putative HNF4α (the nuclear receptor class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates-namely, all four P. pacificus homologs of Hsp70, which have HNF4α motifs-whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.

13.
Nat Commun ; 9(1): 4835, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425245

ABSTRACT

The original version of this Article contained errors in Figure 4. In panel a, the x axis labels of bars 6-11 were incorrect, as depicted in the associated Author Correction. These errors have been corrected in both the PDF and HTML versions of the Article.

14.
Nat Commun ; 9(1): 4119, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297689

ABSTRACT

Polyphenism, the extreme form of developmental plasticity, is the ability of a genotype to produce discrete morphologies matched to alternative environments. Because polyphenism is likely to be under switch-like molecular control, a comparative genetic approach could reveal the molecular targets of plasticity evolution. Here we report that the lineage-specific sulfotransferase SEUD-1, which responds to environmental cues, dosage-dependently regulates polyphenism of mouthparts in the nematode Pristionchus pacificus. SEUD-1 is expressed in cells producing dimorphic morphologies, thereby integrating an intercellular signalling mechanism at its ultimate target. Additionally, multiple alterations of seud-1 support it as a potential target for plasticity evolution. First, a recent duplication of seud-1 in a sister species reveals a direct correlation between genomic dosage and polyphenism threshold. Second, inbreeding to produce divergent polyphenism thresholds resulted in changes in transcriptional dosage of seud-1. Our study thus offers a genetic explanation for how plastic responses evolve.


Subject(s)
Helminth Proteins/metabolism , Mouth/anatomy & histology , Rhabditida/enzymology , Sulfotransferases/metabolism , Animals , Animals, Genetically Modified , Environment , Gene Expression Regulation , Genotype , Helminth Proteins/genetics , Mouth/metabolism , Phenotype , Phylogeny , Polymorphism, Genetic , Rhabditida/anatomy & histology , Rhabditida/genetics , Sulfotransferases/classification , Sulfotransferases/genetics
15.
Proc Natl Acad Sci U S A ; 115(42): 10696-10701, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30275294

ABSTRACT

A recent accumulation of studies has demonstrated that nongenetic, maternally transmitted factors are often critical to the health and development of offspring and can therefore play a role in ecological and evolutionary processes. In particular, microorganisms such as bacteria have been championed as heritable, symbiotic partners capable of conferring fitness benefits to their hosts. At the same time, parents may also pass various nonmicrobial organisms to their offspring, yet the roles of such organisms in shaping the developmental environment of their hosts remain largely unexplored. Here, we show that the nematode Diplogastrellus monhysteroides is transgenerationally inherited and sexually transmitted by the dung beetle Onthophagus taurus By manipulating artificial chambers in which beetle offspring develop, we demonstrate that the presence of D. monhysteroides nematodes enhances the growth of beetle offspring, empirically challenging the paradigm that nematodes are merely commensal or even detrimental to their insect hosts. Finally, our research presents a compelling mechanism whereby the nematodes influence the health of beetle larvae: D. monhysteroides nematodes engineer the bacterial and fungal communities that also inhabit the beetle developmental chambers, including specific taxa known to be involved in biomass degradation, possibly allowing larval beetles better access to their otherwise recalcitrant, plant-based diet. Thus, our findings illustrate that nongenetic inheritance can include intermediately sized organisms that live and proliferate in close association with, and in certain cases enhance, the development of their hosts' offspring.


Subject(s)
Bacteria/growth & development , Coleoptera/microbiology , Coleoptera/parasitology , Fungi/physiology , Nematoda/physiology , Sexually Transmitted Diseases , Symbiosis , Animals , Bacteria/metabolism , Biological Evolution , Coleoptera/growth & development , Female , Male
16.
Curr Opin Genet Dev ; 47: 1-8, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28810163

ABSTRACT

Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.


Subject(s)
Biological Evolution , Gene-Environment Interaction , Phenotype , Animals , Genotype , Models, Biological
17.
Curr Biol ; 26(16): 2174-9, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27451902

ABSTRACT

Developmental plasticity, the ability of one genotype to produce distinct phenotypes in different environments, has been suggested to facilitate phenotypic diversification, and several examples in plants and animals support its macroevolutionary potential [1-8]. However, little is known about associated molecular mechanisms, because environmental effects on development are difficult to study by laboratory approaches. One promising system is the mouth dimorphism of the nematode Pristionchus pacificus [9-12]. Following an irreversible decision in larval development, these nematodes form moveable teeth that occur in either of two discrete morphs. The "eurystomatous" (Eu) form has a wide mouth and two teeth, allowing predatory feeding on other nematodes. In contrast, the alternative ("stenostomatous"; St) form has diminutive mouthparts that largely constrain its diet to microbes. The sulfatase EUD-1 was previously discovered to execute a polyphenism switch based on dosage of functional alleles [13] and confirmed a prediction of evolutionary theory about how developmental switches control plasticity [1, 3]. However, the genetic context of this single gene, and hence the molecular complexity of switch mechanisms, was previously unknown. Here we use a suppressor screen to identify factors downstream of eud-1 in mouth-form regulation. We isolated three dominant, X-linked mutants in the nuclear hormone receptor gene nhr-40 that are haploinsufficient. Both eud-1 nhr-40 double and nhr-40 single mutants are all Eu, whereas transgenic overexpression of nhr-40 does not restore the wild-type phenotype but instead results in nearly all-St lines. Thus, NHR-40 is part of a developmental switch, suggesting that switch mechanisms controlling plasticity consist of multi-component hormonal signaling systems.


Subject(s)
Receptors, Cytoplasmic and Nuclear/genetics , Rhabditida/genetics , Sulfatases/genetics , Animals , Gene Expression Regulation, Developmental , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Male , Mouth/anatomy & histology , Phenotype , Receptors, Cytoplasmic and Nuclear/metabolism , Rhabditida/anatomy & histology , Rhabditida/growth & development , Sulfatases/metabolism , Tooth/anatomy & histology
18.
Evolution ; 70(9): 2155-66, 2016 09.
Article in English | MEDLINE | ID: mdl-27436344

ABSTRACT

Polyphenism is an extreme manifestation of developmental plasticity, requiring distinct developmental programs and the addition of a switch mechanism. Because the genetic basis of polyphenism switches has only begun to be understood, how their mechanisms arise is unclear. In the nematode Pristionchus pacificus, which has a mouthpart polyphenism specialized for alternative diets, a gene (eud-1) executing the polyphenism switch was recently identified as the product of lineage-specific duplications. Here, we infer the role of gene duplications in producing a switch gene. Using reverse genetics and population genetic analyses, we examine evidence for competing scenarios of degeneration and complementation, neutral evolution, and functional specialization. Of the daughter genes, eud-1 alone has assumed switch-like regulation of the mouth polyphenism. Measurements of life-history traits in single, double, and triple sulfatase mutants did not, given a benign environment, identify alternative or complementary roles for eud-1 paralogs. Although possible roles are still unknown, selection analyses of the sister species and 104 natural isolates of P. pacificus detected purifying selection on the genes, suggesting their functionality by their fixation and evolutionary maintenance. Our approach shows the tractability of reverse genetics in a nontraditional model system to study evolution by gene duplication.


Subject(s)
Gene Duplication , Genes, Switch , Phenotype , Rhabditida/genetics , Animals , Biological Evolution , Helminth Proteins/genetics
19.
Sci Adv ; 2(1): e1501031, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26824073

ABSTRACT

Diversification is commonly understood to be the divergence of phenotypes accompanying that of lineages. In contrast, alternative phenotypes arising from a single genotype are almost exclusively limited to dimorphism in nature. We report a remarkable case of macroevolutionary-scale diversification without genetic divergence. Upon colonizing the island-like microecosystem of individual figs, symbiotic nematodes of the genus Pristionchus accumulated a polyphenism with up to five discrete adult morphotypes per species. By integrating laboratory and field experiments with extensive genotyping of individuals, including the analysis of 49 genomes from a single species, we show that rapid filling of potential ecological niches is possible without diversifying selection on genotypes. This uncoupling of morphological diversification and speciation in fig-associated nematodes has resulted from a remarkable expansion of discontinuous developmental plasticity.


Subject(s)
Ficus/genetics , Ficus/parasitology , Nematoda/genetics , Symbiosis/genetics , Animals , Biological Evolution , Ecology , Genetic Speciation , Genome/genetics , Genotype , Phylogeny , Reproductive Isolation
20.
Elife ; 42015 Feb 04.
Article in English | MEDLINE | ID: mdl-25650739

ABSTRACT

Developmental plasticity has been proposed to facilitate phenotypic diversification in plants and animals, but the macroevolutionary potential of plastic traits remains to be objectively tested. We studied the evolution of feeding structures in a group of 90 nematodes, including Caenorhabditis elegans, some species of which have evolved a mouthpart polyphenism, moveable teeth, and predatory feeding. Comparative analyses of shape and form, using geometric morphometrics, and of structural complexity revealed a rapid process of diversification associated with developmental plasticity. First, dimorphism was associated with a sharp increase in complexity and elevated evolutionary rates, represented by a radiation of feeding-forms with structural novelties. Second, the subsequent assimilation of a single phenotype coincided with a decrease in mouthpart complexity but an even stronger increase in evolutionary rates. Our results suggest that a macroevolutionary 'pulse' of plasticity promotes novelties and, even after the secondary fixation of phenotypes, permits sustained rapid exploration of morphospace.


Subject(s)
Biological Evolution , Caenorhabditis elegans/growth & development , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...