Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8452, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231180

ABSTRACT

Identifying epitopes that T cells respond to is critical for understanding T cell-mediated immunity. Traditional multimer and other single cell assays often require large blood volumes and/or expensive HLA-specific reagents and provide limited phenotypic and functional information. Here, we present the Rapid TCR:Epitope Ranker (RAPTER) assay, a single cell RNA sequencing (scRNA-SEQ) method that uses primary human T cells and antigen presenting cells (APCs) to assess functional T cell reactivity. Using hash-tag oligonucleotide (HTO) coding and T cell activation-induced markers (AIM), RAPTER defines paired epitope specificity and TCR sequence and can include RNA- and protein-level T cell phenotype information. We demonstrate that RAPTER identified specific reactivities to viral and tumor antigens at sensitivities as low as 0.15% of total CD8+ T cells, and deconvoluted low-frequency circulating HPV16-specific T cell clones from a cervical cancer patient. The specificities of TCRs identified by RAPTER for MART1, EBV, and influenza epitopes were functionally confirmed in vitro. In summary, RAPTER identifies low-frequency T cell reactivities using primary cells from low blood volumes, and the resulting paired TCR:ligand information can directly enable immunogenic antigen selection from limited patient samples for vaccine epitope inclusion, antigen-specific TCR tracking, and TCR cloning for further therapeutic development.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Receptors, Antigen, T-Cell/genetics , Cell Membrane
2.
Cell Rep ; 19(13): 2665-2680, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28658616

ABSTRACT

Pharmacologic agents that interfere with nucleotide metabolism constitute an important class of anticancer agents. Recent studies have demonstrated that mTOR complex 1 (mTORC1) inhibitors suppress de novo biosynthesis of pyrimidine and purine nucleotides. Here, we demonstrate that mTORC1 itself is suppressed by drugs that reduce intracellular purine nucleotide pools. Cellular treatment with AG2037, an inhibitor of the purine biosynthetic enzyme GARFT, profoundly inhibits mTORC1 activity via a reduction in the level of GTP-bound Rheb, an obligate upstream activator of mTORC1, because of a reduction in intracellular guanine nucleotides. AG2037 treatment provokes both mTORC1 inhibition and robust tumor growth suppression in mice bearing non-small-cell lung cancer (NSCLC) xenografts. These results indicate that alterations in purine nucleotide availability affect mTORC1 activity and suggest that inhibition of mTORC1 contributes to the therapeutic effects of purine biosynthesis inhibitors.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Purine Nucleotides/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Female , Heterografts , Humans , Lung Neoplasms/metabolism , Mice , Purine Nucleotides/biosynthesis
3.
Mol Oncol ; 6(3): 284-98, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22217540

ABSTRACT

PKN3 is an AGC-family protein kinase implicated in growth of metastatic prostate cancer cells with phosphoinositide 3-kinase pathway deregulation. The molecular mechanism, however, by which PKN3 contributes to malignant growth and tumorigenesis is not well understood. Using orthotopic mouse tumor models, we now show that inducible knockdown of PKN3 protein not only blocks metastasis, but also impairs primary prostate and breast tumor growth. Correspondingly, overexpression of exogenous PKN3 in breast cancer cells further increases their malignant behavior and invasiveness in-vitro. Mechanistically, we demonstrate that PKN3 physically interacts with Rho-family GTPases, and preferentially with RhoC, a known mediator of tumor invasion and metastasis in epithelial cancers. Likewise, RhoC predominantly associates with PKN3 compared to its closely related PKN family members. Unlike the majority of Rho GTPases and PKN molecules, which are ubiquitously expressed, both PKN3 and RhoC show limited expression in normal tissues and become upregulated in late-stage malignancies. Since PKN3 catalytic activity is increased in the presence of Rho GTPases, the co-expression and preferential interaction of PKN3 and RhoC in tumor cells are functionally relevant. Our findings provide novel insight into the regulation and function of PKN3 and suggest that the PKN3-RhoC complex represents an attractive therapeutic target in late-stage malignancies.


Subject(s)
Prostatic Neoplasms/metabolism , Protein Kinase C/metabolism , ras Proteins/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Doxycycline/therapeutic use , Fluorescent Antibody Technique , Immunoprecipitation , Male , Mice , Neoplasm Metastasis/genetics , Prostatic Neoplasms/pathology , Protein Binding , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , RNA, Small Interfering , ras Proteins/genetics , rhoC GTP-Binding Protein
4.
Bioorg Med Chem Lett ; 20(13): 3903-5, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20627558

ABSTRACT

A series of 2-(4-aminophenyl)-4,5,6,7-tetrahydro-1,3-benzothiazol-7-ols have been developed as antitumor agents that showed high selectivity against aneuploid cell lines (vs diploid cell lines). Structure-activity relationship studies showed that a hydroxymethyl group at the 2-position of the phenyl ring increased potency and selectivity. A pyrrolidinyl group at the 4-position of the phenyl ring was comparable to a dimethylamino group. The corresponding 5-aza analogs, 2-(4-aminophenyl)-4,5,6,7-tetrahydro[1,3]thiazolo[4,5-c]pyridin-7-ols, retained potency and high level of selectivity against aneuploid cell growth (vs diploid cells). These 5-aza compounds exhibited higher water solubility and higher metabolic stability than the corresponding carba analogs. Compound 19 showed the highest potency against MCF-7 and MDA-MB-361 lines and was selected for further evaluation.


Subject(s)
Aneuploidy , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasm Proteins/deficiency , Neoplasm Proteins/metabolism , Securin , Stereoisomerism , Structure-Activity Relationship
5.
Anal Biochem ; 326(1): 106-13, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14769342

ABSTRACT

In response to diverse stimuli, the transcription factor NF-kappaB is activated by the IKK kinase complex containing two kinases (IKKalpha and IKKbeta) that phosphorylate IkappaB, an inhibitory protein of NF-kappaB. The phosphorylation of IkappaB results in ubiquitination and degradation of IkappaB, allowing NF-kappaB to translocate to the nucleus where it regulates its target genes. To elucidate the role of IKK in the NF-kappaB signaling pathway, we have developed and characterized two quantitative, sensitive, and nonradioactive assays for evaluating IKKbeta activity: a dissociation-enhanced lanthanide fluorescence immunoassay called DELFIA and a homogeneous time-resolved fluorescence resonance energy transfer assay called LANCE. We show that the two assays have similar sensitivity and Michaelis constants (Km) for adenosine 5'-triphosphate and substrate; however, the LANCE format was far more efficient and easier to perform. Additionally, the assays were validated with the known kinase inhibitor K252a and several other kinase inhibitors, which showed that the IC(50) values of the two assays were comparable. In summary, both assays are quantitative, sensitive, reproducible, and amenable to high-throughput screening with improved waste management over radioactive assays.


Subject(s)
Protein Serine-Threonine Kinases/analysis , Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Glutathione/metabolism , Humans , I-kappa B Kinase , Inhibitory Concentration 50 , Protein Serine-Threonine Kinases/antagonists & inhibitors , Radioisotopes , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...