Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 110: 104801, 2021 05.
Article in English | MEDLINE | ID: mdl-33756235

ABSTRACT

The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Histone Deacetylase Inhibitors/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
2.
J Mater Sci Mater Med ; 31(8): 75, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32761252

ABSTRACT

Our study investigates the effect of magnetosome mediated oral Insulin delivery on diabetic induced rat models. The study involves the development of Magnetosome-Insulin (MI) conjugates by direct and indirect (by means of PEG) coupling method and further characterized by microscopic and spectroscopic analysis. The in vivo oral delivery of magnetosome-Insulin conjugate against streptozotocin-induced rat models and its efficiency was investigated. The impact of MI showed a remarkable change in the reduction of FBG levels up to 65% than the standard (Insulin). Similarly, the serum parameters: triglycerides (43.81%), AST&ALT (39.4 and 57.2%), total cholesterol (43.8%) showed significant changes compared to the diabetic control. The histological results of MI treated rats were found similar to control rats. Thus, these significantly notable results on diabetic rats depicts that magnetosomes can be employed as a potential approach and a very promising alternative for the parenteral route of Insulin delivery.


Subject(s)
Diabetes Mellitus/drug therapy , Drug Carriers/chemistry , Insulin/administration & dosage , Magnetosomes/chemistry , Administration, Oral , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Drug Evaluation, Preclinical , Drug Liberation , Insulin/pharmacokinetics , Magnetosomes/metabolism , Magnetospirillum/metabolism , Male , Rats , Rats, Wistar , Streptozocin
3.
IET Nanobiotechnol ; 14(9): 815-822, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33399113

ABSTRACT

The authors report a novel, effective and enhanced method of conjugating anticancer drug, paclitaxel and gallic acid with magnetosomes. Here, anticancer drugs were functionalised with magnetosomes membrane by direct and indirect (via crosslinkers: glutaraldehyde and 3-aminopropyltriethoxysilane) adsorption methods. The prepared magnetosome-drug conjugates were characterised by Fourier transform infrared, zeta potential, field-emission scanning electron microscope and thermogravimetric analysis/differential scanning calorimetry. The drug-loading efficiency and capacity were found to be 87.874% for paclitaxel (MP) and 71.3% for gallic acid (MG), respectively as calculated by ultraviolet spectroscopy and high-performance liquid chromatography. The drug release demonstrated by the diffusion method in phosphate buffer (PBS), showing a prolonged drug release for MP and MG, respectively. The cytotoxicity effect of the MP and MG displayed cytotoxicity of 69.71%, 55.194% against HeLa and MCF-7 cell lines, respectively. The reactive oxygen species, acridine orange and ethidium bromide and 4, 6-diamidino-2-phenylindole staining of the drug conjugates revealed the apoptotic effect of MP and MG. Further, the regulation of tumour suppressor protein, p53 was determined by western blotting which showed an upregulation of p53. Comparatively, the magnetosome-drug conjugates prepared by direct adsorption achieved the best effects on the drug-loading efficiency and the increased percentage of cancer cell mortality and the upregulation of P53. The proposed research ascertains that magnetosomes could be used as effective nanocarriers in cancer therapy.


Subject(s)
Magnetosomes , Neoplasms , Drug Liberation , HeLa Cells , Humans , MCF-7 Cells , Neoplasms/drug therapy , Pharmaceutical Preparations
4.
Int J Environ Health Res ; 30(1): 13-25, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30714827

ABSTRACT

Magnetite nanoparticles (MNPs) are gaining attention because of their biomedical, environmental and industrial applications. However, they have limited uses because of ecotoxicity. On contrast, bacterially synthesized MNPs such as magnetosomes are found to be biocompatible and less toxic due to the lipid bilayer membrane found around magnetite. In this context, this study compares the physio-chemical properties and toxicology effects of MNPs and magnetosomes in different models such as human red blood cells, macrophage cell lines (RAW 264.7), onion root tips (Allium cepa), Artemia salina (A. salina) and zebrafish embryo (Danio rerio). MNPs showed 38.59% hemolysis whereas the maximum hemolysis induced by magnetosomes was 7.03% for the same concentration (250 µg/ml). The cytotoxicity of MNPs and magnetosomes were 36.01% and 13.4%, respectively, at 250 µg/ml. Onion root tip assay revealed high toxicity when treated with MNPs than magnetosomes. The MNPs were further tested for its toxicity against A. salina and 50% mortality rate was observed. Similarly, notable malformation was seen in zebrafish embryo treated with MNPs. However, magnetosomes did not exhibit any mortality and malformation in A. salina and zebrafish embryo. The study revealed that magnetosomes are safe and do not cause any potential risk to environment compared to synthetic MNPs.Abbreviation: MNPs: Magnetic nanoparticles; ATCC: American Type Culture Collection; MTB: Magnetotactic bacteria; MSR-1: Magnetospirillum gryphiswaldense; DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen; MSGM: Magnetospirillum growth medium; D-PBS: Dulbecco phosphate buffer saline; RBC: Red blood cells; SEM: Scanning electron microscopy; HRTEM: High-resolution transition electron microscope; FTIR: Fourier transform infrared spectroscopy; XRD: X-ray powder diffraction; AFM: Atomic-force microscopy; ZP: Zeta Potential; PSD: Particle Size Distribution; EDX: Energy-dispersive X-ray spectroscopy; PBS: Phosphate buffer saline; DMEM: Dulbecco's modified eagle medium; HEPES: (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); MTT:3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; ROS: Reactive oxygen species.


Subject(s)
Magnetosomes , Metal Nanoparticles/toxicity , Animals , Artemia/drug effects , Bacteria/chemistry , Ecotoxicology , Embryo, Nonmammalian/drug effects , Erythrocytes/drug effects , Ferrosoferric Oxide , Humans , Meristem/drug effects , Mice , Onions/drug effects , RAW 264.7 Cells/drug effects , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...