Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 38(12): 2865-73, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15223281

ABSTRACT

Methods to measure protein, exopolysaccharide, viable cell number and INT reduction activity were tested on biofilm growing in a wastewater batch reactor. They were shown to be meaningful indicators of biofilm growth and correlated well with each other. Protein, exopolysaccharide, viable cells and INT reduction rates increased linearly over time. Viable cell number exhibited strong linear correlations with protein (R2= 0.98) and exopolysaccharide (R2= 0.99) while INT reduction rate was somewhat less well correlated (R2= 0.90). Our results indicate production rates of 0.91 x 10(-7) microg EPS per viable cell and 1.0 x 10(-7) microg protein per viable cell. Protein and polysaccharide specific INT reduction rates decreased by approximately 50%, whereas viable cell specific INT reduction rates decreased by 65% and the protein to polysaccharide ratio stayed relatively constant at between 1.1 and 1.2 as the biofilm developed. Measurement of protein, polysaccharide, viable cells and INT reduction rate at depth within the bioreactor showed that they were concentrated in the top 1cm of the influent end of the reactor and each decreased to a base level within 4.5 cm of the inlet. Protein to polysaccharide ratios increased with depth in the reactor and the specific INT reduction rates were maximal at 4.5 cm depth. The results indicate that the biomass can take upwards of 100 days to stabilize during batch (fill and draw) operation of subsurface wetlands and that the relative ratios of biomass components remain relatively constant during biofilm growth. Also, it appears that filtration of suspended solids results in biomass concentration at the inlet to the wetland.


Subject(s)
Biofilms/growth & development , Bioreactors , Ecosystem , Water Purification/methods , Biomass , Kinetics , Polysaccharides/analysis , Proteins/analysis , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...