Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 129(6): 346-355, 2022 12.
Article in English | MEDLINE | ID: mdl-36319737

ABSTRACT

Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.


Subject(s)
Domestication , Microsatellite Repeats , Animals , Cats/genetics , Genotype , Middle East
2.
Immune Netw ; 14(3): 164-70, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24999313

ABSTRACT

JL1, a specific epitope on CD43, is a potential biomarker for the diagnosis of acute leukemia. Although qualitative assays for detecting leukemia-specific CD43 exist, there is a need to develop quantitative assays for the same. Here, we developed two novel monoclonal antibodies (mAbs), 2C8 and 8E10, recognizing different epitopes on CD43. These clones are capable of pairing with YG5, another mAb against JL1 epitope, because they were selectively obtained using sandwich ELISA. Antigens recognized by 2C8 and 8E10 were confirmed as CD43 by western blotting using the CD43-hFC recombinant protein. When expression on various leukemic cell lines was investigated, 2C8 and 8E10 displayed a disparity in the distribution of the epitope. Enzyme assays revealed that these mAbs recognized a sialic acid-dependent epitope on CD43. Using normal thymus and lymph node paraffin-embedded tissues, we confirmed a difference in the epitopes recognized by the two mAbs that was predicted based on the maturity of the cells in the tissue. In summary, we developed and characterized two mAbs, 2C8 and 8E10, which can be used with YG5 in a sandwich ELISA for detecting leukemia-specific CD43.

3.
Mamm Genome ; 25(7-8): 354-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24777202

ABSTRACT

Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.


Subject(s)
Cat Diseases/genetics , Disease Progression , Genetic Linkage , Genome-Wide Association Study , Retinal Degeneration/genetics , Retinal Degeneration/veterinary , Animals , Atrophy , Case-Control Studies , Cats , Chromosomes, Mammalian/genetics , Dogs , Female , Genetic Association Studies , Genetic Loci , Genetic Markers , Genome/genetics , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Male , Pedigree , Persia , Polymorphism, Single Nucleotide/genetics
4.
Mamm Genome ; 16(5): 356-66, 2005 May.
Article in English | MEDLINE | ID: mdl-16104383

ABSTRACT

Brown coat color phenotypes caused by mutations in tyrosinase-related protein-1 (TYRP1) are recognized in many mammals. Brown variations are also recognized in the domestic cat, but the causative mutations are unknown. In cats, Brown, B, has a suggested allelic series, B > b > b1. The B allele is normal wild-type black coloration. Cats with the brown variation genotypes, bb or bb1, are supposedly phenotypically chocolate (aka chestnut) and the light brown genotype, b1b1, are supposedly phenotypically cinnamon (aka red). The complete coding sequence of feline TYRP1 and a portion of the 5' UTR was analyzed by direct sequencing of genomic DNA of wild-type and brown color variant cats. Sixteen single nucleotide polymorphisms (SNPs) were identified. Eight SNPs were in the coding regions, six are silent mutations. Two exon 2 on mutations cause amino acid changes. The C to T nonsense mutation at position 298 causes an arginine at amino acid 100 to be replaced by the opal (UGA) stop codon. This mutation is consistent with the cinnamon phenotype and is the putative light brown, b1, mutation. An intron 6 mutation that potentially disrupts the exon 6 downstream splice-donor recognition site is associated with the chocolate phenotype and is the putative brown, b, mutation. The allelic series was confirmed by segregation and sequence analyses. Three microsatellite makers had significant linkage to the brown phenotype and two for the TYRP1 mutations in a 60-member pedigree. These mutations could be used to identify carriers of brown phenotypes in the domestic cat.


Subject(s)
Cats/genetics , Hair Color/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , DNA/genetics , DNA/isolation & purification , DNA Primers , Female , Humans , Male , Membrane Glycoproteins/genetics , Molecular Sequence Data , Oxidoreductases/genetics , Pedigree , Phenotype , Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...