Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cell Physiol ; 230(2): 347-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24976589

ABSTRACT

Inorganic phosphate (Pi) is an essential nutrient to all living organisms. Nevertheless, hyperphosphatemia is now recognized as a risk factor for cardiovascular events and mortality in chronic kidney disease (CKD) patients. To our knowledge, the mechanisms by which elevated Pi alters smooth muscle cell proliferation have been poorly addressed. Therefore, in this study, we investigated the effects of Pi on cell cycle regulation and apoptosis in human aortic smooth muscle cells (HAoSMC). HAoSMC were treated with physiologic (1 mM) or high (2 and 3 mM) Pi concentrations. We showed that Pi not only decreased significantly cell viability (P < 0.001) but also induced apoptosis of HAoSMC. Moreover, Pi treatment blocked G1/S cell cycle progression by increasing cell number in G0/G1 phase up to 82.4 ± 3.4% for 3 mM vs 76.2 ± 3.1% for control (P < 0.01) while decreasing cell number in S phase. Accordingly, this was associated with a decrease protein expression of cyclin E and its associated CDK (CDK2), and phosphorylated retinoblastoma protein. Moreover, we observed an increase of protein expression of cell cycle inhibitors p15, p21, and p27. Interestingly, we also found that induction of cell cycle arrest was partially dependent on phosphate uptake. Our results demonstrated that Pi reduced HAoSMC proliferation by inducing apoptosis and cell cycle arrest. Indeed, we showed for the first time that Pi affected HAoSMC cell cycle by blocking G1/S progression. These findings would be useful for a better understanding of molecular mechanisms involved in vascular complications observed in CKD patients.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Cell Division/drug effects , Muscle, Smooth, Vascular/drug effects , Phosphates/pharmacology , Cell Cycle Proteins/metabolism , Cell Division/physiology , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Humans , Muscle, Smooth, Vascular/metabolism , Phosphates/metabolism , Retinoblastoma Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...