Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36295129

ABSTRACT

The appearance of electrically neutral water molecules in the structure of cobalt dinitrate dihydrate, Co(NO3)2⋅2H2O, drastically changes its magnetic properties as compared to its waterless counterpart, Co(NO3)2. The title compound shows Ising-like behavior reflected in its thermodynamic properties. It experiences long-range antiferromagnetic order at TN = 20.5 K and metamagnetic transition at µ0HC = 0.76 T. First-principles calculations produce the values of leading exchange interactions J1 ~ 10 K and J2 ~ 0.5 K and single-ion anisotropy D ~ 1 K which allows us to consider Co(NO3)2⋅2H2O as a quasi-two-dimensional magnetic system.

2.
Acta Crystallogr C Struct Chem ; 74(Pt 5): 641-649, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29726476

ABSTRACT

Rubidium tetramanganese tris(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydrothermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the antiferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long-range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange interactions both within and between the kagomé layers. The analysis of these interactions allows us to suggest a model of alternating ferromagnetic and antiferromagnetic arrangements within chains of Mn3 atoms.

3.
Inorg Chem ; 55(20): 10692-10700, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27661209

ABSTRACT

The manganese orthophosphate, Mn3(PO4)2, is characterized by the rich variety of polymorphous modifications, α-, ß'-, and γ-phases, crystallized in monoclinic P21/c (P21/n) space group type with unit cell volume ratios of 2:6:1. The crystal structures of these phases are constituted by three-dimensional framework of corner- and edge-sharing [MnO5] and [MnO6] polyhedra strengthened by [PO4] tetrahedra. All compounds experience long-range antiferromagnetic order at Neel temperature TN = 21.9 K (α-phase), 12.3 K (ß'-phase), and 13.3 K (γ-phase). Additionally, second magnetic phase transition takes place at T* = 10.3 K in ß'-phase. The magnetization curves of α- and ß'-modifications evidence spin-floplike features at B = 1.9 and 3.7 T, while the γ-Mn3(PO4)2 stands out for an extended one-third magnetization plateau stabilized in the range of magnetic field B = 7.5-23.5 T. The first-principles calculations define the main paths of superexchange interaction between Mn spins in these polymorphs. The spin model for α-phase is found to be characterized by collection of uniform and alternating chains, which are coupled in all three directions. The strongest magnetic exchange interaction in γ-phase emphasizes the trimer units, which make chains that are in turn weakly coupled to each other. The spin model of ß'-phase turns out to be more complex compared to α- or γ-phase. It shows complex chain structures involving exchange interactions between Mn2 (Mn2', Mn2″) and Mn3 (Mn3', Mn3″). These chains interact through exchanges involving Mn1 (Mn1', Mn1″) spins.

4.
Inorg Chem ; 53(11): 5830-8, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24823990

ABSTRACT

We report the synthesis and characterization of the new bismuth iron selenite oxochloride Bi2Fe(SeO3)2OCl3. The main feature of its crystal structure is the presence of a reasonably isolated set of spin S = 5/2 zigzag chains of corner-sharing FeO6 octahedra decorated with BiO4Cl3, BiO3Cl3, and SeO3 groups. When the temperature is lowered, the magnetization passes through a broad maximum at Tmax ≈ 130 K, which indicates the formation of a magnetic short-range correlation regime. The same behavior is demonstrated by the integral electron spin resonance intensity. The absorption is characterized by the isotropic effective factor g ≈ 2 typical for high-spin Fe(3+) ions. The broadening of ESR absorption lines at low temperatures with the critical exponent ß = 7/4 is consistent with the divergence of the temperature-dependent correlation length expected for the quasi-one-dimensional antiferromagnetic spin chain upon approaching the long-range ordering transition from above. At TN = 13 K, Bi2Fe(SeO3)2OCl3 exhibits a transition into an antiferromagnetically ordered state, evidenced in the magnetization, specific heat, and Mössbauer spectra. At T < TN, the (57)Fe Mössbauer spectra reveal a low saturated value of the hyperfine field Hhf ≈ 44 T, which indicates a quantum spin reduction of spin-only magnetic moment ΔS/S ≈ 20%. The determination of exchange interaction parameters using first-principles calculations validates the quasi-one-dimensional nature of magnetism in this compound.

5.
J Phys Condens Matter ; 19(29): 296206, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-21483077

ABSTRACT

We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.

SELECTION OF CITATIONS
SEARCH DETAIL
...