Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 17378, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478342

ABSTRACT

The characterization of mitochondrial genome has been evidenced as an efficient field of study for phylogenetic and evolutionary analysis in vertebrates including turtles. The aim of this study was to distinguish the structure and variability of the Trionychidae species mitogenomes through comparative analysis. The complete mitogenome (16796 bp) of an endangered freshwater turtle, Nilssonia nigricans was sequenced and annotated. The mitogenome encoded for 37 genes and a major non-coding control region (CR). The mitogenome was A + T biased (62.16%) and included six overlapping and 19 intergenic spacer regions. The Relative synonymous codon usage (RSCU) value was consistent among all the Trionychidae species; with the exception of significant reduction of Serine (TCG) frequency in N. nigricans, N. formosa, and R. swinhoei. In N. nigricans, most of the transfer RNAs (tRNAs) were folded into classic clover-leaf secondary structures with Watson-Crick base pairing except for trnS1 (GCT). The comparative analysis revealed that most of the tRNAs were structurally different, except for trnE (TTC), trnQ (TTG), and trnM (CAT). The structural features of tRNAs resulted ≥ 10 mismatched or wobble base pairings in 12 tRNAs, which reflects the nucleotide composition in both H- and L-strands. The mitogenome of N. nigricans also revealed two unique tandem repeats (ATTAT)8, and (TATTA)20 in the CR. Further, the conserved motif 5'-GACATA-3' and stable stem-loop structure was detected in the CRs of all Trionychidae species, which play an significant role in regulating transcription and replication in the mitochondrial genome. Further, the comparative analysis of Ka/Ks indicated negative selection in most of the protein coding genes (PCGs). The constructed Maximum Likelihood (ML) phylogeny using all PCGs showed clustering of N. nigricans with N. formosa. The resulting phylogeny illustrated the similar topology as described previously and consistent with the taxonomic classification. However, more sampling from different taxonomic groups of Testudines and studies on their mitogenomics are desirable for better understanding of the phylogenetic and evolutionary relationships.


Subject(s)
Genome, Mitochondrial/genetics , Turtles/genetics , Animals , Base Composition/genetics , Base Pairing/genetics , Codon/genetics , DNA Replication/genetics , DNA, Intergenic/genetics , Nucleotides/genetics , Open Reading Frames/genetics , Phylogeny , RNA, Transfer/genetics , Transcription, Genetic/genetics
2.
PLoS One ; 13(10): e0199404, 2018.
Article in English | MEDLINE | ID: mdl-30379813

ABSTRACT

The melon thrips, Thrips palmi is a serious pest and vector for plant viruses on a wide range of economically important crops. DNA barcoding evidenced the presence of cryptic diversity in T. palmi and that warrants exhaustive molecular studies. Our present study is on decoding the first complete mitochondrial genome of T. palmi (15,333 bp) through next-generation sequencing (NGS). The T. palmi mt genome contains 37 genes, including 13 Protein coding genes (PCGs), two ribosomal RNA (rRNAs), 22 transfer RNA (tRNAs), and two control regions (CRs). The majority strand of T. palmi revealed 78.29% A+T content, and 21.72% G+C content with positive AT skew (0.09) and negative GC skew (-0.06). The ATN initiation codons were observed in 12 PCGs except for cox1 which have unique start codon (TTG). The relative synonymous codon usage (RSCU) analysis revealed Phe, Leu, Ile, Tyr, Asn, Lys and Met were the most frequently used amino acids in all PCGs. The codon (CGG) which is assigned to Arginine in most insects but absent in T. palmi. The Ka/Ks ratio ranges from 0.078 in cox1 to 0.913 in atp8. We observed the typical cloverleaf secondary structure in most of the tRNA genes with a few exceptions; absence of DHU stem and loop in trnV and trnS, absence of DHU loop in trnE, lack of T-arm and loop in trnN. The T. palmi gene order (GO) was compared with ancestral GO and observed an extensive gene arrangement in PCGs, tRNAs and rRNAs. The cox2 gene was separated from the gene block 'cox2-trnL2' in T. palmi as compared with the other thrips mt genomes, including ancestor GO. Further, the nad1, trnQ, trnC, trnL1, trnV, trnF, rrnS, and rrnL were inversely transpositioned in T. palmi GO. The gene blocks 'trnQ-trnS2-trnD' and 'trnN-trnE-trnS1-trnL1' seems to be genus specific. The T. palmi mt genome contained 24 intergenic spacer regions and 12 overlapping regions. The 62 bp of CR2 shows the similarity with CR1 indicating a possible duplication. The occurrence of multiple CRs in thrips mt genomes seems to be a derived trait which needs further investigation. Although, the study depicted extensive gene rearrangements in T. palmi mt genome, but the negative GC skew reflects only strand asymmetry. Both the ML and BI phylogenetic trees revealed the close relationships of Thrips with Scirtothrips as compared to Frankliniella. Thus, more mt genomes of the diverse thrips species are required to understand the in-depth phylogenetic and evolutionary relationships.


Subject(s)
Genome, Mitochondrial , Thysanoptera/genetics , Animals , Base Composition , Bayes Theorem , Codon , Codon, Initiator , Comparative Genomic Hybridization , DNA, Intergenic , Gene Order , Gene Rearrangement , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...