Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(1): 82, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147182

ABSTRACT

Soil erosion is the inherent and destructive threat affecting agricultural production and livelihood of million mouths. The increased frequency of floods and land use/land cover changes has made Upper Jhelum Sub-catchment susceptible to soil erosion risk. Morphometric based watershed prioritization for soil erosion risk may help in sustainable management of natural resources. Thus, this paper endeavors to prioritize watersheds of Upper Jhelum Sub-catchment in India based on morphometric parameters for soil erosion risk using geospatial techniques. Weights to the morphometric parameters were assigned through a multi-criteria decision method. The watersheds in the Sub-catchment have been categorized into low, medium, high and very high priority classes based on prioritization ranks that were determined by computing the compound value for the soil erosion risk, based on prioritization ranks obtained through compound value for the soil erosion risk. The results revealed 1E1D3 and 1E1D8 watersheds accorded very high priority. The watersheds namely IE1D2 and IEID4 were found under high priority. Medium priority for soil erosion risk was determined in IEID5 and IED7 watersheds while 1E1D1 and IE1D6 watersheds were identified for low priority. The study calls for implementing soil conservation practices in the Sub-catchment. The Sub-catchment can be made less hazardous for the soil erosion risk by implementing contour farming, building check dams, terrace farming, afforestation and limiting large scale overgrazing. The findings of this study may offer valuable insights for stakeholders for conservation of soil resource. The approach utilized in the study may be linked with soil loss estimation for effective conservation of natural resources in further future studies.


Subject(s)
Environmental Monitoring , Soil Erosion , Soil , India , Agriculture
2.
Risk Anal ; 42(12): 2765-2780, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35092965

ABSTRACT

Globally, floods as dynamic hydraulic hazard have caused widespread damages to both socioeconomic conditions and environment at various scales. Managing flood and management of water resource is a global challenge under the changing climatic condition. This study assessed flood susceptibility in the Bhagirathi sub-basin, India using entropy information theory and geospatial technology. Twelve flood susceptibility parameters such as land use/land cover, normalized difference vegetation index (NDVI), slope, elevation, geology, geomorphology, normalized difference water index (NDWI), soil, drainage density, average rainfall, maximum temperature, and humidity during monsoon season were utilized to examine flood susceptibility. Receiver operating characteristics (ROC) curve and Leave-One-Out Cross-Validation (LOOCV) techniques were carried out to validate flood susceptibility map. Kappa statistics was also used to check the reliability of the flood susceptibility model. Findings of the study revealed that nearly 45% area of the sub-basin was highly susceptible to flood followed by moderate (29.3%), very high (19%), low (6.9%), and very low (0.2%). These findings also revealed that nearly 92% area in the eastern, north-eastern, and deltaic sub-basin was susceptible to floods. ROC analysis indicated high success (0.932) and prediction (0.903) rates for the susceptibility map while LOOCV (R2 being 0.97) and Kappa (k = 0.934) have shown substantial prediction of the model. Hence, the susceptibility maps are useful for the local planners and government organization in designing the early flood warning system, and reducing the human and economic losses. The methodology used in this study is applicable for analyzing flood susceptibility at spatial scales in similar systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...