Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Sci Rep ; 13(1): 13604, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604916

ABSTRACT

Tumour heterogeneity in breast cancer poses challenges in predicting outcome and response to therapy. Spatial transcriptomics technologies may address these challenges, as they provide a wealth of information about gene expression at the cell level, but they are expensive, hindering their use in large-scale clinical oncology studies. Predicting gene expression from hematoxylin and eosin stained histology images provides a more affordable alternative for such studies. Here we present BrST-Net, a deep learning framework for predicting gene expression from histopathology images using spatial transcriptomics data. Using this framework, we trained and evaluated four distinct state-of-the-art deep learning architectures, which include ResNet101, Inception-v3, EfficientNet (with six different variants), and vision transformer (with two different variants), all without utilizing pretrained weights for the prediction of 250 genes. To enhance the generalisation performance of the main network, we introduce an auxiliary network into the framework. Our methodology outperforms previous studies, with 237 genes identified with positive correlation, including 24 genes with a median correlation coefficient greater than 0.50. This is a notable improvement over previous studies, which could predict only 102 genes with positive correlation, with the highest correlation values ranging from 0.29 to 0.34.


Subject(s)
Deep Learning , Mammary Neoplasms, Animal , Animals , Transcriptome , Gene Expression Profiling , Electric Power Supplies
2.
Phys Med ; 107: 102534, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36804696

ABSTRACT

BACKGROUND AND PURPOSE: Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness. METHODS: A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200×. RESULTS: Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%. CONCLUSION: To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.


Subject(s)
Colorectal Neoplasms , Neural Networks, Computer , Humans , Algorithms , Diagnosis, Computer-Assisted/methods , Biopsy , Colorectal Neoplasms/diagnostic imaging
3.
Artif Intell Rev ; 56(2): 1627-1698, 2023.
Article in English | MEDLINE | ID: mdl-35693000

ABSTRACT

Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.

4.
Arch Comput Methods Eng ; 30(1): 639-673, 2023.
Article in English | MEDLINE | ID: mdl-36091717

ABSTRACT

With the acceleration of urbanization and living standards, microorganisms play an increasingly important role in industrial production, bio-technique, and food safety testing. Microorganism biovolume measurements are one of the essential parts of microbial analysis. However, traditional manual measurement methods are time-consuming and challenging to measure the characteristics precisely. With the development of digital image processing techniques, the characteristics of the microbial population can be detected and quantified. The applications of the microorganism biovolume measurement method have developed since the 1980s. More than 62 articles are reviewed in this study, and the articles are grouped by digital image analysis methods with time. This study has high research significance and application value, which can be referred to as microbial researchers to comprehensively understand microorganism biovolume measurements using digital image analysis methods and potential applications.

5.
Front Microbiol ; 13: 829027, 2022.
Article in English | MEDLINE | ID: mdl-35547119

ABSTRACT

Environmental microorganisms (EMs) are ubiquitous around us and have an important impact on the survival and development of human society. However, the high standards and strict requirements for the preparation of environmental microorganism (EM) data have led to the insufficient of existing related datasets, not to mention the datasets with ground truth (GT) images. This problem seriously affects the progress of related experiments. Therefore, This study develops the Environmental Microorganism Dataset Sixth Version (EMDS-6), which contains 21 types of EMs. Each type of EM contains 40 original and 40 GT images, in total 1680 EM images. In this study, in order to test the effectiveness of EMDS-6. We choose the classic algorithms of image processing methods such as image denoising, image segmentation and object detection. The experimental result shows that EMDS-6 can be used to evaluate the performance of image denoising, image segmentation, image feature extraction, image classification, and object detection methods. EMDS-6 is available at the https://figshare.com/articles/dataset/EMDS6/17125025/1.

6.
Front Microbiol ; 13: 792166, 2022.
Article in English | MEDLINE | ID: mdl-35308350

ABSTRACT

In recent years, deep learning has made brilliant achievements in Environmental Microorganism (EM) image classification. However, image classification of small EM datasets has still not obtained good research results. Therefore, researchers need to spend a lot of time searching for models with good classification performance and suitable for the current equipment working environment. To provide reliable references for researchers, we conduct a series of comparison experiments on 21 deep learning models. The experiment includes direct classification, imbalanced training, and hyper-parameters tuning experiments. During the experiments, we find complementarities among the 21 models, which is the basis for feature fusion related experiments. We also find that the data augmentation method of geometric deformation is difficult to improve the performance of VTs (ViT, DeiT, BotNet, and T2T-ViT) series models. In terms of model performance, Xception has the best classification performance, the vision transformer (ViT) model consumes the least time for training, and the ShuffleNet-V2 model has the least number of parameters.

7.
Comput Biol Med ; 143: 105265, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123138

ABSTRACT

In recent years, colorectal cancer has become one of the most significant diseases that endanger human health. Deep learning methods are increasingly important for the classification of colorectal histopathology images. However, existing approaches focus more on end-to-end automatic classification using computers rather than human-computer interaction. In this paper, we propose an IL-MCAM framework. It is based on attention mechanisms and interactive learning. The proposed IL-MCAM framework includes two stages: automatic learning (AL) and interactivity learning (IL). In the AL stage, a multi-channel attention mechanism model containing three different attention mechanism channels and convolutional neural networks is used to extract multi-channel features for classification. In the IL stage, the proposed IL-MCAM framework continuously adds misclassified images to the training set in an interactive approach, which improves the classification ability of the MCAM model. We carried out a comparison experiment on our dataset and an extended experiment on the HE-NCT-CRC-100K dataset to verify the performance of the proposed IL-MCAM framework, achieving classification accuracies of 98.98% and 99.77%, respectively. In addition, we conducted an ablation experiment and an interchangeability experiment to verify the ability and interchangeability of the three channels. The experimental results show that the proposed IL-MCAM framework has excellent performance in the colorectal histopathological image classification tasks.

8.
Comput Biol Med ; 142: 105207, 2022 03.
Article in English | MEDLINE | ID: mdl-35016101

ABSTRACT

BACKGROUND AND OBJECTIVE: Gastric cancer is the fifth most common cancer globally, and early detection of gastric cancer is essential to save lives. Histopathological examination of gastric cancer is the gold standard for the diagnosis of gastric cancer. However, computer-aided diagnostic techniques are challenging to evaluate due to the scarcity of publicly available gastric histopathology image datasets. METHODS: In this paper, a noble publicly available Gastric Histopathology Sub-size Image Database (GasHisSDB) is published to identify classifiers' performance. Specifically, two types of data are included: normal and abnormal, with a total of 245,196 tissue case images. In order to prove that the methods of different periods in the field of image classification have discrepancies on GasHisSDB, we select a variety of classifiers for evaluation. Seven classical machine learning classifiers, three Convolutional Neural Network classifiers, and a novel transformer-based classifier are selected for testing on image classification tasks. RESULTS: This study performed extensive experiments using traditional machine learning and deep learning methods to prove that the methods of different periods have discrepancies on GasHisSDB. Traditional machine learning achieved the best accuracy rate of 86.08% and a minimum of just 41.12%. The best accuracy of deep learning reached 96.47% and the lowest was 86.21%. Accuracy rates vary significantly across classifiers. CONCLUSIONS: To the best of our knowledge, it is the first publicly available gastric cancer histopathology dataset containing a large number of images for weakly supervised learning. We believe that GasHisSDB can attract researchers to explore new algorithms for the automated diagnosis of gastric cancer, which can help physicians and patients in the clinical setting.


Subject(s)
Stomach Neoplasms , Algorithms , Diagnosis, Computer-Assisted , Humans , Machine Learning , Neural Networks, Computer , Stomach Neoplasms/diagnostic imaging
9.
Artif Intell Rev ; 55(4): 2875-2944, 2022.
Article in English | MEDLINE | ID: mdl-34602697

ABSTRACT

Microorganisms such as bacteria and fungi play essential roles in many application fields, like biotechnique, medical technique and industrial domain. Microorganism counting techniques are crucial in microorganism analysis, helping biologists and related researchers quantitatively analyze the microorganisms and calculate their characteristics, such as biomass concentration and biological activity. However, traditional microorganism manual counting methods, such as plate counting method, hemocytometry and turbidimetry, are time-consuming, subjective and need complex operations, which are difficult to be applied in large-scale applications. In order to improve this situation, image analysis is applied for microorganism counting since the 1980s, which consists of digital image processing, image segmentation, image classification and suchlike. Image analysis-based microorganism counting methods are efficient comparing with traditional plate counting methods. In this article, we have studied the development of microorganism counting methods using digital image analysis. Firstly, the microorganisms are grouped as bacteria and other microorganisms. Then, the related articles are summarized based on image segmentation methods. Each part of the article is reviewed by methodologies. Moreover, commonly used image processing methods for microorganism counting are summarized and analyzed to find common technological points. More than 144 papers are outlined in this article. In conclusion, this paper provides new ideas for the future development trend of microorganism counting, and provides systematic suggestions for implementing integrated microorganism counting systems in the future. Researchers in other fields can refer to the techniques analyzed in this paper.

10.
Comput Biol Med ; 141: 105026, 2022 02.
Article in English | MEDLINE | ID: mdl-34801245

ABSTRACT

Cervical cancer is a very common and fatal type of cancer in women. Cytopathology images are often used to screen for this cancer. Given that there is a possibility that many errors can occur during manual screening, a computer-aided diagnosis system based on deep learning has been developed. Deep learning methods require a fixed dimension of input images, but the dimensions of clinical medical images are inconsistent. The aspect ratios of the images suffer while resizing them directly. Clinically, the aspect ratios of cells inside cytopathological images provide important information for doctors to diagnose cancer. Therefore, it is difficult to resize directly. However, many existing studies have resized the images directly and have obtained highly robust classification results. To determine a reasonable interpretation, we have conducted a series of comparative experiments. First, the raw data of the SIPaKMeD dataset are pre-processed to obtain standard and scaled datasets. Then, the datasets are resized to 224 × 224 pixels. Finally, 22 deep learning models are used to classify the standard and scaled datasets. The results of the study indicate that deep learning models are robust to changes in the aspect ratio of cells in cervical cytopathological images. This conclusion is also validated via the Herlev dataset.


Subject(s)
Deep Learning , Uterine Cervical Neoplasms , Cervix Uteri , Diagnosis, Computer-Assisted , Female , Humans , Neural Networks, Computer , Uterine Cervical Neoplasms/diagnostic imaging
11.
Biomed Res Int ; 2021: 6671417, 2021.
Article in English | MEDLINE | ID: mdl-34258279

ABSTRACT

Gastric cancer is a common and deadly cancer in the world. The gold standard for the detection of gastric cancer is the histological examination by pathologists, where Gastric Histopathological Image Analysis (GHIA) contributes significant diagnostic information. The histopathological images of gastric cancer contain sufficient characterization information, which plays a crucial role in the diagnosis and treatment of gastric cancer. In order to improve the accuracy and objectivity of GHIA, Computer-Aided Diagnosis (CAD) has been widely used in histological image analysis of gastric cancer. In this review, the CAD technique on pathological images of gastric cancer is summarized. Firstly, the paper summarizes the image preprocessing methods, then introduces the methods of feature extraction, and then generalizes the existing segmentation and classification techniques. Finally, these techniques are systematically introduced and analyzed for the convenience of future researchers.


Subject(s)
Image Processing, Computer-Assisted , Stomach/diagnostic imaging , Stomach/pathology , Algorithms , Color , Computer-Aided Design , Diagnosis, Computer-Assisted/methods , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional , Machine Learning , Poisson Distribution , Reproducibility of Results , Stomach Neoplasms/diagnostic imaging
12.
Comput Biol Med ; 136: 104649, 2021 09.
Article in English | MEDLINE | ID: mdl-34332347

ABSTRACT

Cervical cancer, one of the most common fatal cancers among women, can be prevented by regular screening to detect any precancerous lesions at early stages and treat them. Pap smear test is a widely performed screening technique for early detection of cervical cancer, whereas this manual screening method suffers from high false-positive results because of human errors. To improve the manual screening practice, machine learning (ML) and deep learning (DL) based computer-aided diagnostic (CAD) systems have been investigated widely to classify cervical Pap cells. Most of the existing studies require pre-segmented images to obtain good classification results. In contrast, accurate cervical cell segmentation is challenging because of cell clustering. Some studies rely on handcrafted features, which cannot guarantee the classification stage's optimality. Moreover, DL provides poor performance for a multiclass classification task when there is an uneven distribution of data, which is prevalent in the cervical cell dataset. This investigation has addressed those limitations by proposing DeepCervix, a hybrid deep feature fusion (HDFF) technique based on DL, to classify the cervical cells accurately. Our proposed method uses various DL models to capture more potential information to enhance classification performance. Our proposed HDFF method is tested on the publicly available SIPaKMeD dataset and compared the performance with base DL models and the late fusion (LF) method. For the SIPaKMeD dataset, we have obtained the state-of-the-art classification accuracy of 99.85%, 99.38%, and 99.14% for 2-class, 3-class, and 5-class classification. This method is also tested on the Herlev dataset and achieves an accuracy of 98.32% for 2-class and 90.32% for 7-class classification. The source code of the DeepCervix model is available at: https://github.com/Mamunur-20/DeepCervix.


Subject(s)
Deep Learning , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis
13.
PLoS One ; 16(5): e0250631, 2021.
Article in English | MEDLINE | ID: mdl-33979356

ABSTRACT

Environmental Microorganism Data Set Fifth Version (EMDS-5) is a microscopic image dataset including original Environmental Microorganism (EM) images and two sets of Ground Truth (GT) images. The GT image sets include a single-object GT image set and a multi-object GT image set. EMDS-5 has 21 types of EMs, each of which contains 20 original EM images, 20 single-object GT images and 20 multi-object GT images. EMDS-5 can realize to evaluate image preprocessing, image segmentation, feature extraction, image classification and image retrieval functions. In order to prove the effectiveness of EMDS-5, for each function, we select the most representative algorithms and price indicators for testing and evaluation. The image preprocessing functions contain two parts: image denoising and image edge detection. Image denoising uses nine kinds of filters to denoise 13 kinds of noises, respectively. In the aspect of edge detection, six edge detection operators are used to detect the edges of the images, and two evaluation indicators, peak-signal to noise ratio and mean structural similarity, are used for evaluation. Image segmentation includes single-object image segmentation and multi-object image segmentation. Six methods are used for single-object image segmentation, while k-means and U-net are used for multi-object segmentation. We extract nine features from the images in EMDS-5 and use the Support Vector Machine (SVM) classifier for testing. In terms of image classification, we select the VGG16 feature to test SVM, k-Nearest Neighbors, Random Forests. We test two types of retrieval approaches: texture feature retrieval and deep learning feature retrieval. We select the last layer of features of VGG16 network and ResNet50 network as feature vectors. We use mean average precision as the evaluation index for retrieval. EMDS-5 is available at the URL:https://github.com/NEUZihan/EMDS-5.git.


Subject(s)
Algorithms , Databases, Factual/statistics & numerical data , Environmental Microbiology/standards , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Support Vector Machine/statistics & numerical data , Signal-To-Noise Ratio
14.
J Xray Sci Technol ; 28(5): 821-839, 2020.
Article in English | MEDLINE | ID: mdl-32773400

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) constitutes a public health emergency globally. The number of infected people and deaths are proliferating every day, which is putting tremendous pressure on our social and healthcare system. Rapid detection of COVID-19 cases is a significant step to fight against this virus as well as release pressure off the healthcare system. OBJECTIVE: One of the critical factors behind the rapid spread of COVID-19 pandemic is a lengthy clinical testing time. The imaging tool, such as Chest X-ray (CXR), can speed up the identification process. Therefore, our objective is to develop an automated CAD system for the detection of COVID-19 samples from healthy and pneumonia cases using CXR images. METHODS: Due to the scarcity of the COVID-19 benchmark dataset, we have employed deep transfer learning techniques, where we examined 15 different pre-trained CNN models to find the most suitable one for this task. RESULTS: A total of 860 images (260 COVID-19 cases, 300 healthy and 300 pneumonia cases) have been employed to investigate the performance of the proposed algorithm, where 70% images of each class are accepted for training, 15% is used for validation, and rest is for testing. It is observed that the VGG19 obtains the highest classification accuracy of 89.3% with an average precision, recall, and F1 score of 0.90, 0.89, 0.90, respectively. CONCLUSION: This study demonstrates the effectiveness of deep transfer learning techniques for the identification of COVID-19 cases using CXR images.


Subject(s)
Coronavirus Infections/diagnostic imaging , Deep Learning , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Betacoronavirus , COVID-19 , Databases, Factual , Diagnosis, Differential , Humans , Neural Networks, Computer , Pandemics , Pneumonia/diagnostic imaging , Radiography, Thoracic , Reproducibility of Results , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...