Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Food Sci ; 2023: 5639081, 2023.
Article in English | MEDLINE | ID: mdl-36942196

ABSTRACT

The chemical composition and sensory profile of cocoa beans are essential factors determining the quality of cocoa-based products. In this study, cocoa bean samples were collected from various regions of Indonesia, including Aceh, Banten, Bali, East Java, West Sumatra, West Sulawesi, East Kalimantan, and Yogyakarta. The cocoa beans were fermented and sun-dried according to the producers' protocols and local practices. The sensory profile, fat content, total phenolic content, and the composition of sugars, organic acids, and amino acids of the cocoa bean samples were analyzed. The results revealed that the chemical composition and sensory profiles of the samples were diverse. The sensory profiles of cocoa liquor samples were described by low intensities of cocoa notes with the occurrence of fruity, floral, spicy, and sweet notes. The concentration of acetic acid, lactic acid, and some amino acids (glutamic acid, proline, and methionine) was associated with fresh fruit, browned fruit, and roasted note of the cocoa liquor, respectively. The variation in the environmental conditions and postharvest practices contributed to the diversity of cocoa beans' chemical and sensory characteristics.

2.
Microbiol Resour Announc ; 12(3): e0051322, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36840600

ABSTRACT

Lactiplantibacillus plantarum Mut-3 was isolated from tempeh. After whole-genome sequencing, analysis of its possibility as a probiotic candidate was performed using subsystem analysis with RAST with the SEED viewer.

3.
J Food Sci Technol ; 60(1): 181-189, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36268502

ABSTRACT

The use of mixed culture in the fermentation industry requires more complicated equipment, processes, and monitoring systems; therefore, a single culture may be preferable. This study aimed to investigate the correlation between chemical and microbiological properties and sensory characteristics. In addition, this study aimed to determine the different characteristics of cheese made using single probiotic cultures of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Kita-3 and mixed culture. The obtained results showed that the chemical characteristics of cream cheese made using single cultures were similar to those of cream cheese made using mixed cultures. The viability of the cells remained high after 35 days of storage for the single culture, which was not the case for the mixed culture. In terms of sensory analysis, cream cheese made using the single culture L. plantarum Kita-3 showed higher overall liking score among the samples, which might correlate with the high ester and ketone content. In addition, there was a strong relationship between the ethyl octanoate and methyl butanol contents and the overall liking score. The results of this study showed that the use of a single culture of L. plantarum Kita-3 could improve the sensory characteristics of cream cheese with probiotic properties. This study also contributed to the development of cream cheese production, particularly in the screening of potential starters.

4.
Int J Food Sci ; 2022: 1663772, 2022.
Article in English | MEDLINE | ID: mdl-36438165

ABSTRACT

Probiotic coffee is an alternative to processed coffee that is preferred and can improve the balance of intestinal microflora so that it has a positive impact on health. Cell viability of probiotics may decrease during storage. Factors that can affect viability during storage are storage temperature, packaging, oxygen, and water activity. This study is aimed at evaluating the viability, storage stability, and shelf life of the probiotic instant coffee Lactiplantibacillus plantarum subsp. plantarum Dad-13 in vacuum and nonvacuum aluminium foil packaging and different storage temperatures. This study used a complete randomised design with three replicates of treatments. They were packaged using 90 µm thick aluminium foil in a vacuum and nonvacuum and stored at 4°C and 30°C for 50 days and 37°C for 15 days. Based on the literature, a temperature of 4°C can maintain the viability of probiotics for more than one month, the temperature commonly used to store dry products is room temperature (30°C), so longer storage (50 days) is tried. Meanwhile, to accelerate the prediction of quality degradation, extreme temperatures were used based on the literature that the viability of probiotics decreased drastically after being stored at 37°C for 7 days, then tried for longer storage (15 days). The evaluation of product was carried by sensory testing by comparing commercial instant coffee. The product has been tested for cell viability, water activity, and shelf life. The result showed that the colour attribute was significantly different for all formulations. The bitterness of probiotic instant coffee differed significantly from other formulations. The commercial instant coffee was preferred by panellist in terms of colour and bitterness. The aroma, sweetness, and overall attributes of all formulations were not significantly different. The cell viability in vacuum was higher than nonvacuum treatment, and it was higher in 4°C. However, cell viability for all treatments and during storage was still above 107 log CFU/g. Water activity in probiotic instant coffee with vacuum packaging is lower than in nonvacuum and stored at 4°C lower than in other temperatures. However, all treatments were still below 0.60. The shelf life of products reaches two years when they are stored in vacuum packaging at 4°C while a temperature of 30°C reaches 3 months. So, the panellists accepted probiotic instant coffee, vacuum packaging, and low temperature could maintain viability, stability, and longer shelf life.

5.
Microorganisms ; 10(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36144350

ABSTRACT

Malnutrition, which consists of undernutrition and overnutrition, is associated with gut microbiota composition, diet, and sociodemographic factors. Undernutrition is a nutrient deficiency that that should be identified to prevent other diseases. In this study, we evaluate the gut microbiota composition in undernourished children in association with diet and sociodemographic factors. We observed normal children (n= 20) and undernourished children (n= 20) for ten days in Lombok and Yogyakarta. Diet, sociodemographic factors, and medical records were recorded using food records, screening forms, and standard household questionnaires. Gut microbiota analysis was performed using 16S rRNA gene sequencing targeting the V3-V4 region. The result showed that the undernourished group had lower energy intake. In addition, the undernourished group had lower quality of medical records, parent knowledge, education, and exclusive breastfeeding. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were significantly different between normal and undernourished children. Based on LefSe, we determined that Akkermansia is a biomarker for undernourished children. In conclusion, diet and sociodemographic factors affect the gut microbiota composition of undernourished children.

6.
Microorganisms ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144408

ABSTRACT

Several pathways link type 2 diabetes (T2D) mellitus to the gut microbiome. By modifying the gut microbiota (GM), probiotics may be useful in the treatment of T2D. Lactobacillus plantarum Dad-13 is an indigenous Indonesian probiotic strain that has colonized the digestive tracts of healthy Indonesian adults. Furthermore, the GM of Indonesians is dominated by L. plantarum. The probiotic L. plantarum Dad-13 is likely suitable for Indonesians. This study aimed to assess the effect of the probiotic L. plantarum Dad-13 on metabolic profiles and GM of women with T2D in Yogyakarta, Indonesia. Twenty women from each group of forty T2D patients received either a probiotic or a placebo. The probiotic group consumed 1 g skim milk powder containing 1010 CFU/g L. plantarum daily for 11 weeks. The placebo group received 1 g skim milk powder only daily for 11 weeks. At the start and end of the experiment, anthropometric measures, dietary intake surveys, blood samples, and fecal samples were obtained. The GM analysis of all samples was performed using polymerase chain reaction, and Illumina Novaseq was applied to the selected samples from each group at the beginning and end of the trial. Short-chain fatty acids (SCFAs) were analyzed with gas chromatography. The level of HbA1c in the probiotic group (n:10) significantly decreased from 9.34 ± 2.79% to 8.32 ± 2.04%. However, in comparison with the placebo (n:8), L. plantarum Dad-13 supplementation did not significantly decrease the HbA1c level. No significant change was observed in the fasting blood sugar and total cholesterol levels in either group. The GM analysis showed that L. plantarum Dad-13 supplementation resulted in a considerable increase in the L. plantarum number. No significant changes were observed in the Bifidobacterium and Prevotella populations. In addition, no significant change was observed in the fecal pH and SCFA (e.g., acetic acid, propionate, butyrate, and total SCFA) after supplementation with L. plantarum Dad-13.

7.
Nutrients ; 14(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268024

ABSTRACT

Undernutrition is associated with gut microbiota unbalance, and probiotics are believed to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted to evaluate the efficacy of gummy L. plantarum Dad-13 (108-9 CFU/3 g) to prevent the progression of severe undernutrition. Two groups of moderate undernutrition infants were involved in this study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of both groups was recorded using food records. Our results revealed that the probiotic group had better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of Enterobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity. Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Malnutrition , Probiotics , Gastrointestinal Microbiome/genetics , Humans , Infant , Malnutrition/prevention & control , RNA, Ribosomal, 16S/genetics
8.
AIMS Microbiol ; 8(4): 403-421, 2022.
Article in English | MEDLINE | ID: mdl-36694579

ABSTRACT

Lactiplantibacillus plantarum subsp. plantarum Kita-3 is a candidate probiotic from Halloumi cheese produced by Mazaraat Artisan Cheese, Yogyakarta, Indonesia. This study evaluated the safety of consuming a high dose of L. plantarum subsp. plantarum Kita-3 in Sprague-Dawley rats for 28 days. Eighteen male rats were randomly divided into three groups, such as the control group, the skim milk group, and the probiotic group. Feed intake and body weight were monitored, and blood samples, organs (kidneys, spleen, and liver), and the colon were dissected. Organ weight, hematological parameters, serum glutamic oxaloacetic transaminase (SGOT), and serum glutamic pyruvic transaminase (SGPT) concentrations, as well as intestinal morphology of the rats, were measured. Microbial analyses were carried out on the digesta, feces, blood, organs, and colon. The results showed that consumption of L. plantarum did not negatively affect general health, organ weight, hematological parameters, SGOT and SGPT activities, or intestinal morphology. The number of L. plantarum in the feces of rats increased significantly, indicating survival of the bacterium in the gastrointestinal tract. The bacteria in the blood, organs, and colon of all groups were identified using repetitive-polymerase chain reaction with the BOXA1R primers and further by 16S rRNA gene sequencing analysis, which revealed that they were not identical to L. plantarum subsp. plantarum Kita-3. Thus, this strain did not translocate to the blood or organs of rats. Therefore, L. plantarum subsp. plantarum Kita-3 is likely to be safe for human consumption.

10.
Microorganisms ; 9(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576890

ABSTRACT

The infant gut microbiota plays a critical role in early life growth and derives mainly from maternal gut and breast milk. This study aimed to analyze the differences in the gut microbiota, namely Bifidobacterium and Lactobacillus communities at species level among breast milk as well as maternal and infant feces at different time points after delivery. Fifty-one mother-infant pairs from Indonesia were recruited, and the breast milk and maternal and infant feces were collected and analyzed by high throughput sequencing (16S rRNA, Bifidobacterium groEL and Lactobacillus groEL genes). PCoA results showed bacterial composition was different among breast milk and maternal and infant feces within the first two years. The abundance of Bifidobacterium and Bacteroides were significantly higher in infant feces compared to their maternal feces from birth to two years of age, and maternal breast milk within six months after birth (p < 0.05), whereas the abundance of Blautia, Prevotella, and Faecalibacterium was higher in maternal feces compared to that in breast milk within six months and infant feces within one year after birth, respectively (p < 0.05). The relative abundances of Bacteroides and Lactobacillus was higher and lower in infant feces compared to that in maternal feces only between one and two years of age, respectively (p < 0.05). For Bifidobacterium community at species level, B. adolescentis, B. ruminantium, B. longum subsp. infantis, B. bifidum, and B. pseudolongum were identified in all samples. However, the profile of Bifidobacterium was different between maternal and infant feces at different ages. The relative abundances of B. adolescentis and B. ruminantium were higher in maternal feces compared to those in infant feces from birth to one year of age (p < 0.05), while the relative abundances of B. longum subsp. infantis and B. bifidum were higher in infant feces compared to those in maternal feces beyond three months, and the relative abundance of B. pseudolongum was only higher in infant feces between three and six months (p < 0.05). For Lactobacillus community, L. paragasseri showed higher relative abundance in infant feces when the infant was younger than one year of age (p < 0.05). This study showed bacterial composition at the genus level and Bifidobacterium and Lactobacillus communities at the species level were stage specific in maternal breast milk as well as and maternal and infant feces.

11.
Microorganisms ; 9(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922321

ABSTRACT

Indonesia is a developing country facing the national problem of the growing obesity and diabetes in its population due to recent drastic dietary and lifestyle changes. To understand the link between the gut microbiome, diet, and health of Indonesian people, fecal microbiomes and metabolomes of 75 Indonesian adults in Yogyakarta City, including obese people (n = 21), type 2 diabetes (T2D) patients (n = 25), and the controls (n = 29) were characterized together with their dietary and medical records. Variations of microbiomes showed a triangular distribution in the principal component analysis, driven by three dominant bacterial genera, namely Bacteroides, Prevotella, and Romboutsia. The Romboutsia-driven microbiome, characterized by low bacterial diversity and high primary bile acids, was associated with fat-driven obesity. The Bacteroides-driven microbiome, which counteracted Prevotella but was associated with Ruminococcaceae concomitantly increased with high-carbohydrate diets, showed positive correlation with T2D indices but negative correlation with body mass index. Notably, Bacteroides fragilis was increased in T2D patients with a decrease in fecal conjugated bile acids, particularly tauroursodeoxycholic acid (TUDCA), a farnesoid X receptor (FXR) antagonist with anti-diabetic activity, while these features disappeared in patients administered metformin. These results indicate that the gut microbiome status of Indonesian adults is differently associated with obesity and T2D under their varied dietary habits.

12.
World J Gastroenterol ; 27(1): 107-128, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33505154

ABSTRACT

BACKGROUND: Shifting on lifestyle, diet, and physical activity contributed on increasing number of obese people around the world. Multiple factors influence the development of obesity. Some research suggested that gut microbiota (GM) plays an important role in nutrient absorption and energy regulation of individuals, thus affecting their nutritional status. Report of Indonesia Basic Health Research showed that the prevalence of obesity in every province tended to increase. Although the root cause of obesity is excessive calorie intake compared with expenditure, the differences in gut microbial ecology between healthy and obese humans may affect energy homeostasis. GM affect body weight, especially obesity. Probiotics that are consumed while alive and able to colonize in the intestine are expected to increase the population of good bacteria, especially Bifidobacteria and Lactobacilli, and suppress pathogens such as Enterobacteriaceae and Staphylococcus. The strain of L. plantarum Dad-13 has been demonstrated to survive and colonize in the gastrointestinal tract of healthy Indonesian adults who consume fermented milk containing L. plantarum Dad-13. The consumption of probiotic L. plantarum Dad-13 powder decreased E. coli and non-E. coli coliform bacteria in school-aged children in Indonesia. L. plantarum is a dominant bacterium in the average Indonesian's GM. For this reason, this bacterium is probably a more suitable probiotic for Indonesians. AIM: To determine the effect of the consumption of indigenous probiotic Lactobacillus plantarum Dad-13 powder in overweight adults in Yogyakarta (Indonesia). METHODS: Sixty overweight volunteers with a body mass index (BMI) equal to or greater than 25 consume indigenous probiotic powder L. plantarum Dad-13 (2 × 109 CFU/gram/sachet) for 90 d. The study was a randomized, double-blind, placebo-controlled study. The volunteers filled in a diary on a daily basis, which consisted of questions on study product intake (only during ingestion period), other food intake, number of bowel movements, fecal quality (consistency and color), any medications received, and any symptom of discomfort, such as diarrhea, constipation, vomiting, gassing, sensation of illness, etc. Fecal samples and the subjects' diaries were collected on the morning of day 10 + 1, which was marked as the end of the baseline period and the start of the ingestion period. During the ingestion period (from day 11 to day 101), several parameters to measure and analyze the results included body weight and height (once a month), the lipid profile, GM analysis using MiSeq, short-chain fatty acid (SCFA) analysis using gas chromatography, and the measurement of fecal pH using a pH meter. RESULTS: The consumption of indigenous probiotic powder L. plantarum Dad-13 caused the average body weight and BMI of the probiotic group to decrease from 84.54 ± 17.64 kg to 83.14 ± 14.71 kg and 33.10 ± 6.15 kg/m2 to 32.57 ± 5.01 kg/m2, respectively. No significant reduction of body weight and BMI in the placebo group was observed. An analysis of the microbiota showed that the number of Bacteroidetes, specifically Prevotella, increased significantly, while that of Firmicutes significantly decreased. No significant change in lipid profile in both groups was found. Also, no significant change in SCFAs (e.g., butyrate, propionate, acetic acid) and pH level was found after the consumption of the probiotic. CONCLUSION: No significant differences in pH before and after ingestion were observed in both the probiotic and placebo groups as well as in the lipid profile of both cholesterol and triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and the LDL/HDL ratio. In addition, no significant changes in the concentration of SCFAs (e.g., acetic acid, propionate, and butyrate) were found after con-sumption. Interestingly, a significant decrease in body weight and BMI (P < 0.05) was determined in the treatment group. An analysis of GM shows that L. plantarum Dad-13 caused the Firmicutes population to decrease and the Bacteroidetes population (especially Prevotella) to increase.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Probiotics , Adult , Child , Double-Blind Method , Escherichia coli , Feces , Humans , Indonesia/epidemiology , Powders , Probiotics/therapeutic use
13.
Microorganisms ; 9(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430510

ABSTRACT

Malnutrition has been associated with the gut microbiota composition and the gastrointestinal environment. This study aimed to evaluate whether there is a difference in the gut microbiota profile between the normal and undernutrition (considered moderate malnutrition) children and evaluate the gastrointestinal environment observed from the short-chain fatty acid (SCFA) profile. Ten days' observations were done between normal (n:13) and undernutrition (n:15) children. The subject's diet was recorded using a food record. Analysis of the gut microbiota was performed using 16S rRNA gene sequencing targeting the V3-V4 variables region, while the SCFA profile was analyzed using gas chromatography. The result shows that the undernutrition group's energy intake was lower than in the normal group. Although there was no difference in diversity index and overall gut composition, overexpression of the genera Methanobrevibacter, Anaerococcus, Eubacterium, and Succinivibrio was observed in the undernutrition group. Meanwhile, in the normal group, Ruminococcus and Fusobacterium were found. In both groups, there was also the dominant of Prevotella enterotype. Gastrointestinal conditions in the normal group tended to be more acidic compared to the undernutrition group. It occurs due to the high concentration of propionate and butyric acids.

14.
Gut Microbes ; 12(1): 1761240, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32453977

ABSTRACT

Gastrointestinal (GI) microbiota play an important role in human health and wellbeing and the first wave of gut microbes arrives mostly through vertical transmission from mother to child. This study has undertaken to understand the microbiota profile of healthy Southeast Asian mother-infant pairs. Here, we examined the fecal, vaginal and breast milk microbiota of Indonesian mothers and the fecal microbiota of their children from less than 1 month to 48 months old. To determine the immune status of children and the effect of diet at different ages, we examined the level of cytokines, bile acids in the fecal water and weaning food frequency. The fecal microbiota of the children before weaning contained mainly Bacteroides and Bifidobacterium, which presented at low abundance in the samples of mothers. After weaning, the fecal microbiome of children was mainly of the Prevotella type, with decreasing levels of Bifidobacterium, thus becoming more like the fecal microbiome of the mother. The abundance of infant fecal commensals generally correlated inversely with potential pathogens before weaning. The fecal Bifidobacterium in children correlated inversely with the consumption of complex carbohydrates and fruits after weaning. The specific cytokines related to the proliferation and maturation of immunity were found to increase after weaning. A decreasing level of primary bile acids and an increase of secondary bile acids were observed after weaning. This study highlights the change in the GI microbiota of infants to adult-type microbiota after weaning and identifies diet as a major contributing factor.


Subject(s)
Bacteroides/isolation & purification , Bifidobacterium/isolation & purification , Bile Acids and Salts/analysis , Cytokines/analysis , Gastrointestinal Microbiome/physiology , Prevotella/isolation & purification , Feces/microbiology , Female , Humans , Indonesia , Infant , Infant, Newborn , Milk, Human/microbiology , Mothers , RNA, Ribosomal, 16S/genetics , Vagina/microbiology
15.
Article in English | MEDLINE | ID: mdl-32178381

ABSTRACT

The growing interest in spicy foods leads to the global demand for spices, particularly dried chili. This study aimed to assay both aflatoxin (AFs) and ochratoxin A (OTA) contamination using an integrative method of morphological identification, molecular detection, and chromatography analysis on dried chili provided from traditional and modern markets in Indonesia. The results showed that total fungal infection ranged from 1-408 × 103 CFU/g. Eighty percent of the chili obtained from both the traditional and the modern markets were infected by Aspergillus spp., in which 50% of the infections were identified as A. parasiticus and A. flavus. A complete set of targeted genes involved in AF production and OTA were detected in two isolates of A. flavus and one isolate of A. carbonarius, respectively. The levels of AFs B1, B2, and OTA in the contaminated dried chilies were in the range of 39.3-139.5 µg/kg, 2.6-33.3 µg/kg, and 23.7-84.6 µg/kg, respectively. In contrast, no AFs G1 and G2 were detected. This study showed that the fungal infection of Indonesian dried chili occurs both in the field and during storage; thus, it is suggested to implement good agricultural and handling processes.


Subject(s)
Aflatoxins , Food Microbiology , Food, Preserved , Ochratoxins , Aflatoxins/analysis , Aspergillus/genetics , Aspergillus/isolation & purification , Chromatography, High Pressure Liquid , Food, Preserved/analysis , Food, Preserved/microbiology , Indonesia , Ochratoxins/analysis
16.
World J Gastroenterol ; 25(12): 1478-1491, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30948911

ABSTRACT

BACKGROUND: Recently, gut microbiota has been associated with various diseases other than intestinal disease. Thus, there has been rapid growth in the study of gut microbiota. Considering the numerous factors influencing gut microbiota such as age, diet, etc., area-based research is required. Indonesia has numerous different tribes and each of these tribes have different lifestyles. Hence, it is expected that each tribe has a specific gut microbiota. A deeper insight into the composition of gut microbiota can be used to determine the condition of gut microbiota in Indonesians and to consider which treatment may be suitable and effective to improve health status. AIM: To investigate the gut microbiota of Indonesian subjects represented by Javanese and Balinese tribes by analyzing fecal samples. METHODS: Fecal samples were collected from a total of 80 individuals with 20 in each of the young groups ranging from 25-45 years and the elderly group aged 70 years or more from two different regions, Yogyakarta and Bali. Fecal sample collection was performed at the end of the assessment period (day 14 ± 1 d) during which time the subjects were not allowed to consume probiotic or antibiotic products. The quantification of various Clostridium subgroups, Lactobacillus subgroups, Enterococcus, Streptococcus, Staphylococcus, Bacteroides fragilis group and Prevotella, Bifidobacterium and Atopobium cluster, Enterobacteriaceae and Pseudomonas was performed using the Yakult intestinal flora-scan (YIF-SCAN). RESULTS: The bacterial population in younger subjects' feces was higher than that in the elderly population, with a total of approximately 10.0 - 10.6 log10 bacterial cells/g feces. The most abundant bacteria in all groups were Clostridium, followed by Prevotella, Atopobium, Bifidobacterium and Bacteroides. In the elderly, an increase in Enterobacteriaceae, Coliform and Escherichia coli was found. In terms of bacterial counts in Yogyakarta, total bacteria, Clostridium coccoides (C. coccoides) group, Bifidobacterium, Prevotella, Lactobacillus plantarum subgroup, and Streptococcus were significantly higher (P < 0.05) in younger than elderly subjects, while the Lactobacillus gasseri subgroup, Lactobacillus casei subgroup, and Lactobacillus reuteri subgroup counts were significantly lower (P < 0.05) in younger subjects. In Balinese subjects, total bacteria, C. coccoides group, Clostridium leptum subgroup, Bacteroides fragilis group, and Prevotella were significantly higher (P < 0.05) in younger compared to elderly individuals, while the Lactobacillus ruminis subgroup, and Enterobacteriaceae were significantly lower (P < 0.05) in younger subjects. The results also revealed that, besides the C. coccoides group and Clostridium leptum group being the most abundant gut microbiota in both Yogyakarta and Balinese people, the latter was indicated by a higher Clostridium perfringens count, which was almost 10 times that of Yogyakarta subjects. This may be a response to different lifestyles in the different tribes; however, this phenomenon requires further extensive study. CONCLUSION: Bacterial populations were higher in younger than in elderly subjects. Most abundant bacterial groups were Clostridium, Prevotella, Atopobium, Bifidobacterium, and Bacteroides. The level of Clostridium perfringens in Yogyakarta subjects was lower than that in Balinese subjects.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Adult , Age Factors , Aged , Feces/microbiology , Female , Healthy Volunteers , Humans , Indonesia , Male , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...