Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 351: 141206, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219987

ABSTRACT

The elution of pharmaceutical products such as metformin at higher concentrations than the safe level in aquatic systems is a serious threat to human health and the ecosystem. Photocatalytic technology using TiO2 semiconductors potentially fixes this problem. This study aims to synthesize triphasic anatase-rutile-brookite TiO2 using ultrasound assisted sol-gel technique in the presence of acid and its application to photodegradation of metformin under UV light irradiation. Based on X-ray diffraction analysis, a TiO2 sample consisted of anatase (76%), rutile (7%), and brookite (17%) polymorph (A76R7B17) that was fully crystallized. Scanning electron microscopy (EM)-energy dispersive X-ray spectra results showed agglomerated triphasic A76R7B17 with irregular spherical clusters. Transmission EM results revealed that the crystal size of A76R7B17 was 4-14 nm. The Brunauer-Emmett-Teller analysis showed the sample's specific surface area of 149 m2 g-1. The degradation test of metformin demonstrated that the A76R7B17 exhibited a 75.4% degradation efficiency after 120 min under UV light irradiation, significantly higher than using biphasic and single-phase TiO2 photocatalysts. This difference could be attributed to the heterojunction effect of triphasic materials that effectively reduced electron-hole recombination rate as well as the combination of effective electron transfer from conduction band of brookite and anatase and the utilization of wider range of UV-visible light using rutile.


Subject(s)
Ecosystem , Light , Humans , Ultraviolet Rays , Titanium/chemistry
2.
ACS Omega ; 8(8): 7858-7867, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36872971

ABSTRACT

Titania-silica nanocomposites (TiO2-SiO2) show outstanding performance and is very well applied in photocatalysis. In this research, SiO2 extracted from Bengkulu beach sand will be used as a supporting material of the TiO2 photocatalyst for application to polyester fabrics. TiO2-SiO2 nanocomposite photocatalysts were synthesized using the sonochemical method. The coating of the TiO2-SiO2 material on polyester was carried out using the sol-gel-assisted sonochemistry method. The method of determining self-cleaning activity uses a digital image-based colorimetric (DIC) method, which is much simpler than using an analytical instrument. The scanning electron microscopy-energy dispersive X-ray spectroscopy results showed that the sample particles adhered to the fabric surface and the best particle distribution was shown in pure SiO2 and 1:0.5 TiO2-SiO2 nanocomposites. Analysis of Fourier-transform infrared (FTIR) spectroscopy proved the presence of Ti-O and Si-O bonds as well as the typical spectrum of polyester, which indicated that the fabric had been successfully coated with nanocomposite particles. The analysis of the contact angle of the liquid on the polyester surface showed a significant change in the properties of the TiO2 and SiO2 pure coated fabrics, but changes occur only slightly in the other samples. Self-cleaning activity against the degradation of methylene blue dye has been successfully carried out using DIC measurement. The test results showed that the best self-cleaning activity was shown by TiO2-SiO2 nanocomposite with a ratio of 1:0.5 with the degradation ratio reaching 96.8%. Furthermore, the self-cleaning property remains after the washing process, which shows excellent washing resistance.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36839072

ABSTRACT

TiO2 exists naturally in three crystalline forms: Anatase, rutile, brookite, and TiO2 (B). These polymorphs exhibit different properties and consequently different photocatalytic performances. This paper aims to clarify the differences between titanium dioxide polymorphs, and the differences in homophase, biphase, and triphase properties in various photocatalytic applications. However, homophase TiO2 has various disadvantages such as high recombination rates and low adsorption capacity. Meanwhile, TiO2 heterophase can effectively stimulate electron transfer from one phase to another causing superior photocatalytic performance. Various studies have reported the biphase of polymorph TiO2 such as anatase/rutile, anatase/brookite, rutile/brookite, and anatase/TiO2 (B). In addition, this paper also presents the triphase of the TiO2 polymorph. This review is mainly focused on information regarding the heterophase of the TiO2 polymorph, fabrication of heterophase synthesis, and its application as a photocatalyst.

4.
Anim Welf ; 32: e64, 2023.
Article in English | MEDLINE | ID: mdl-38487443

ABSTRACT

There is a trend towards the adoption of cage-free housing systems in the egg industry across Asia. While cage-free housing systems can hold significant animal welfare advantages over cages, there can also be challenges in managing these systems. This exploratory study aimed to investigate the perspectives of egg producers on the main challenges and proposed solutions associated with cage-free systems in China, Indonesia, Thailand, Japan, Malaysia, and the Philippines. Cage-free producers found disease prevention and maintaining a healthy profit margin more difficult than producers from cage farms, while it was less difficult to provide environmental enrichment in cage-free systems compared to cage farms. The top challenges for cage-free producers were the cost of production, system management, disease, sales, and egg production, and the top proposed solution was to improve on-farm practices and efficiencies. Eighty-one percent of egg producers believed that more support is needed to maintain their farms than is currently available, and support was most needed in helping to improve sales, improve farm operations, lower farm costs, and provide information for producers in the form of education and training. Most responses identified the government as the stakeholder that should offer support. These results may help direct further studies in this field as well as supplying information to develop relevant initiatives with an emphasis on education and training, thereby improving animal welfare on cage-free farms and increasing the uptake of high welfare cage-free farms across the region.

5.
Materials (Basel) ; 15(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35009476

ABSTRACT

The danger from the content of dyes produced by textile-industry waste can cause environmental degradation when not appropriately treated. However, existing waste-treatment methods have not been effective in degrading dyes in textile waste. Zero-valent iron (ZVI), which has been widely used for wastewater treatment, needs to be developed to acquire effective green production. Tea (Camellia sinensis) leaves contain many polyphenolic compounds used as natural reducing agents. Therefore, this study aims to synthesize ZVI using biological reducing agents from tea-leaf extract and apply the Fenton method to degrade the color mixture of rhodamine B and methyl orange. The results show that the highest polyphenols were obtained from tea extract by heating to 90 °C for 80 min. Furthermore, PSA results show that ZVI had a homogeneous size of iron and tea extract at a volume ratio of 1:3. The SEM-EDS results show that all samples had agglomerated particles. The ZVI 1:1 showed the best results, with a 100% decrease in the color intensity of the dye mixture for 60 min of reaction and a degradation percentage of 100% and 66.47% for rhodamine B and methyl orange from LC-MS analysis, respectively. Finally, the decrease in COD value by ZVI was 92.11%, higher than the 47.36% decrease obtained using Fe(II).

6.
RSC Adv ; 11(61): 38528-38536, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493220

ABSTRACT

The entries of pathogenic bacteria into the human body remain a severe problem to health that can be prevented using antibacterial agents. Meanwhile, the photocatalytic technique using semiconductor nanocomposite TiO2-SiO2 has great potential as an antibacterial method. In order to utilize natural resources, SiO2 supporting materials are obtained from the extraction of beach sand due to the high silica content. Therefore, this study aims to synthesize a nanocomposite of TiO2 with SiO2 extracted from beach sand as an antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial activity test used the dilution and optical density method. Based on XRD analysis, the crystals of TiO2 in the synthesized composites showed a more dominant anatase structure. Furthermore, Ti-O-Si bonds were identified from the IR spectrum, which showed the interaction between TiO2 and SiO2. In addition, SEM-EDX results showed agglomerated spherical particles with a TiO2-SiO2 nanocomposite particle size of 40-107 nm. The best antibacterial activity was demonstrated by the 1 : 0.5 TiO2-SiO2 nanocomposite, with inactivation percentages of S. aureus and P. aeruginosa of 98.69% and 97.44%, respectively.

7.
Heliyon ; 6(4): e03742, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32346628

ABSTRACT

High-density polyethylene (HDPE) is among the flexible polymers on account of its appropriate processability and adequate mechanical properties. Grafting reactive monomers such as glycidyl methacrylate (GMA) and maleic anhydride (MAH) onto polyethylene was one of the ultimate choices to improve the physicochemical properties of HDPE. MAH is an appropriate option for grafting onto HDPE owing to its low reactivity and it relatively undergoes a direct grafting onto the polymer. The grafting of MAH on HDPE copolymerization has been conducted using monomer microencapsulation method in this study. The monomer microencapsulation samples were extracted stratified using acetone and xylen. Samples were then analyzed using titration, melt flow rate, FTIR, DSC, TGA and C-NMR. The results showed the degree of paste monomer on HDPE with a microencapsulation method was greater when compared to the usual method. We were successfully improving the grafting degree of MAH onto HDPE by using a simple blending method. The pre-microencapsulated HDPE provided an increasing in grafting degree of 1.88% (HDPE-g-MAH) over the conventional one which shows the value of 1.39% (HDPE-g-MAH).

8.
Heliyon ; 6(1): e03159, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31934652

ABSTRACT

Fuel cell membrane of Nafion is commonly used as the electrolyte material of fuel cell which has good mechanical properties, but the hydrophobicity reduce its proton conductivity. Thus, the other polymer is used for the electrolyte membrane. A polymer modification of sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) by attaching sulfonate group and oxide compounds such as sAl2O3 would enhance the proton conductivity. The research is aimed to modify PVDF-co-HFP via the addition of sAl2O3 or pristine Al2O3 and studying the effect of sulfonated Al2O3 on the conductivity. The research includes Al2O3 particles synthesis, the sulfonation of Al2O3, the membrane preparation, the sulfonation of membrane, and the characterisation of membrane using FTIR, SEM-EDX, and Four-point Probe Electrical Device Analysis. SEM-EDX analysis explained that the 6% addition of Al2O3 showed denser cross-sectioned membrane rather than the 9% addition of Al2O3. The highest conductivity achieved can be revealed at the 6% sAl2O3 addition on PVDF-co-HFP membrane as 2.27 × 10-3 S cm-1 which is higher than a previous study.

SELECTION OF CITATIONS
SEARCH DETAIL
...