Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Comput Biol Med ; 172: 108232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484697

ABSTRACT

Human activity recognition (HAR) based on Wi-Fi signals has attracted significant attention due to its convenience and the availability of infrastructures and sensors. Channel State Information (CSI) measures how Wi-Fi signals propagate through the environment. However, many scenarios and applications have insufficient training data due to constraints such as cost, time, or resources. This poses a challenge for achieving high accuracy levels with machine learning techniques. In this study, multiple deep learning models for HAR were employed to achieve acceptable accuracy levels with much less training data than other methods. A pretrained encoder trained from a Multi-Input Multi-Output Autoencoder (MIMO AE) on Mel Frequency Cepstral Coefficients (MFCC) from a small subset of data samples was used for feature extraction. Then, fine-tuning was applied by adding the encoder as a fixed layer in the classifier, which was trained on a small fraction of the remaining data. The evaluation results (K-fold cross-validation and K = 5) showed that using only 30% of the training and validation data (equivalent to 24% of the total data), the accuracy was improved by 17.7% compared to the case where the encoder was not used (with an accuracy of 79.3% for the designed classifier, and an accuracy of 90.3% for the classifier with the fixed encoder). While by considering more calculational cost, achieving higher accuracy using the pretrained encoder as a trainable layer is possible (up to 2.4% improvement), this small gap demonstrated the effectiveness and efficiency of the proposed method for HAR using Wi-Fi signals.


Subject(s)
Human Activities , Machine Learning , Humans
2.
Sci Rep ; 13(1): 22200, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097753

ABSTRACT

Infectious keratitis (IK) is a major cause of corneal opacity. IK can be caused by a variety of microorganisms. Typically, fungal ulcers carry the worst prognosis. Fungal cases can be subdivided into filamentous and yeasts, which shows fundamental differences. Delays in diagnosis or initiation of treatment increase the risk of ocular complications. Currently, the diagnosis of IK is mainly based on slit-lamp examination and corneal scrapings. Notably, these diagnostic methods have their drawbacks, including experience-dependency, tissue damage, and time consumption. Artificial intelligence (AI) is designed to mimic and enhance human decision-making. An increasing number of studies have utilized AI in the diagnosis of IK. In this paper, we propose to use AI to diagnose IK (model 1), differentiate between bacterial keratitis and fungal keratitis (model 2), and discriminate the filamentous type from the yeast type of fungal cases (model 3). Overall, 9329 slit-lamp photographs gathered from 977 patients were enrolled in the study. The models exhibited remarkable accuracy, with model 1 achieving 99.3%, model 2 at 84%, and model 3 reaching 77.5%. In conclusion, our study offers valuable support in the early identification of potential fungal and bacterial keratitis cases and helps enable timely management.


Subject(s)
Corneal Ulcer , Deep Learning , Eye Infections, Bacterial , Eye Infections, Fungal , Keratitis , Humans , Artificial Intelligence , Keratitis/microbiology , Corneal Ulcer/complications , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/microbiology , Eye Infections, Bacterial/diagnosis
3.
Sci Rep ; 13(1): 13010, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563285

ABSTRACT

Retinoblastoma is a rare form of cancer that predominantly affects young children as the primary intraocular malignancy. Studies conducted in developed and some developing countries have revealed that early detection can successfully cure over 90% of children with retinoblastoma. An unusual white reflection in the pupil is the most common presenting symptom. Depending on the tumor size, shape, and location, medical experts may opt for different approaches and treatments, with the results varying significantly due to the high reliance on prior knowledge and experience. This study aims to present a model based on semi-supervised machine learning that will yield segmentation results comparable to those achieved by medical experts. First, the Gaussian mixture model is utilized to detect abnormalities in approximately 4200 fundus images. Due to the high computational cost of this process, the results of this approach are then used to train a cost-effective model for the same purpose. The proposed model demonstrated promising results in extracting highly detailed boundaries in fundus images. Using the Sørensen-Dice coefficient as the comparison metric for segmentation tasks, an average accuracy of 93% on evaluation data was achieved.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Child , Humans , Child, Preschool , Retinoblastoma/diagnostic imaging , Fundus Oculi , Supervised Machine Learning , Retinal Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...