Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Acta Ophthalmol ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706142

ABSTRACT

PURPOSE: To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population. METHODS: Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed. RESULTS: Thirty-two individuals with FZD4 c.313A>G variant and three individuals with FZD4 c.40_49del were included in the study. The clinical phenotype was variable even among family members with the same FZD4 variant. Only 34% (N = 12/35) of variant-positive individuals had been clinically diagnosed with FEVR. The median age of the onset of symptoms was 2.3 years, ranging between 0 to 25 years. Median visual acuity was 0.1 logMAR (0.8 Snellen decimal), ranging between light perception and -0.1 logMAR (1.25 Snellen decimal). Most (N = 33/35, 94%) were classified as not visually impaired. Despite unilateral visual loss present in some, they did not meet the criteria of visual impairment according to the WHO classification. Two study patients (N = 2/35, 6%) had severe visual impairment. The most common FEVR stage in study patient's eyes (N = 28/70 eyes, 40%) was FEVR stage 1, that is, avascular periphery or abnormal vascularisation. Most of FZD4-variant-positive study patient's eyes (N = 31/50 eyes, 62%) were myopic. Two individuals presented with persistent hyperplastic primary vitreous expanding the phenotypic spectrum of FEVR. Shared haplotypes extending approximately 0.9 Mb around the recurrent FZD4 c.313A>G variant were identified. CONCLUSION: Most study patients were unaffected or had mild clinical manifestations by FEVR. Myopia seemed to be overly common in FZD4-variant-positive individuals.

2.
Genet Med ; : 101170, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818797

ABSTRACT

PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptopms included mild/borderline intellectual disability (n=22); gross and/or fine motor difficulties (n=15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n=26); nonverbal (n=3), seizures with various seizure types and treatment responses (n=10); ophthalmological comorbidities (n=20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n=2) and autoimmune conditions (n=4). Education, work, and residence varied and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both datasets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.

3.
Front Mol Neurosci ; 17: 1372662, 2024.
Article in English | MEDLINE | ID: mdl-38660387

ABSTRACT

The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.

4.
Mol Syndromol ; 15(2): 149-155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585553

ABSTRACT

Introduction: Horizontal gaze palsy with progressive scoliosis-2 (HGPPS2, MIM 617542) with impaired intellectual development aka developmental split-brain syndrome is an ultra-rare congenital disorder caused by pathogenic biallelic variants in the deleted in colorectal cancer (DCC) gene. Case Presentation: We report the clinical and genetic characterization of a Syrian patient with a HGPPS2 phenotype and review the previously published cases of HGPPS2. The genetic screening was performed using exome sequencing on Illumina platform. Genetic analysis revealed a novel DCC c.(?_1912)_(2359_?)dup, p.(Ser788Tyrfs*4) variant segregating recessively in the family. This type of variant has not been described previously in the HGPPS2 patients. To date, including the case reported here, three different homozygous pathogenic frameshift variants, one homozygous missense variant, and an intragenic duplication in the DCC gene have been reported in 8 patients with the HGPPS2 syndrome. Conclusion: The analysis of duplications and deletions in the DCC should be included in the routine genetic diagnostic evaluation of patients with suspected HGPPS2. This report expands the knowledge of phenotypic and genotypic spectrum of pathogenic variants causing HGPPS2.

5.
Eur J Hum Genet ; 32(5): 576-583, 2024 May.
Article in English | MEDLINE | ID: mdl-38467730

ABSTRACT

Intellectual disability (ID) is a common disorder, yet there is a wide spectrum of impairment from mild to profoundly affected individuals. Mild ID is seen as the low extreme of the general distribution of intelligence, while severe ID is often seen as a monogenic disorder caused by rare, pathogenic, highly penetrant variants. To investigate the genetic factors influencing mild and severe ID, we evaluated rare and common variation in the Northern Finland Intellectual Disability cohort (n = 1096 ID patients), a cohort with a high percentage of mild ID (n = 550) and from a population bottleneck enriched in rare, damaging variation. Despite this enrichment, we found only a small percentage of ID was due to recessive Finnish-enriched variants (0.5%). A larger proportion was linked to dominant variation, with a significant burden of rare, damaging variation in both mild and severe ID. This rare variant burden was enriched in more severe ID (p = 2.4e-4), patients without a relative with ID (p = 4.76e-4), and in those with features associated with monogenic disorders. We also found a significant burden of common variants associated with decreased cognitive function, with no difference between mild and more severe ID. When we included common and rare variants in a joint model, the rare and common variants had additive effects in both mild and severe ID. A multimodel inference approach also found that common and rare variants together best explained ID status (ΔAIC = 16.8, ΔBIC = 10.2). Overall, we report evidence for the additivity of rare and common variant burden throughout the spectrum of intellectual disability.


Subject(s)
Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Female , Finland , Adult , Genetic Variation
6.
Br J Haematol ; 204(5): 2040-2048, 2024 May.
Article in English | MEDLINE | ID: mdl-38415930

ABSTRACT

The hexokinase (HK) enzyme plays a key role in red blood cell energy production. Hereditary non-spherocytic haemolytic anaemia (HNSHA) caused by HK deficiency is a rare disorder with only 12 different disease-associated variants identified. Here, we describe the clinical features and genotypes of four previously unreported patients with hexokinase 1 (HK1)-related HNSHA, yielding two novel truncating HK1 variants. The patients' phenotypes varied from mild chronic haemolytic anaemia to severe infantile-onset transfusion-dependent anaemia. Three of the patients had mild haemolytic disease caused by the common HK1 promoter c.-193A>G variant combined with an intragenic HK1 variant, emphasizing the importance of including this promoter variant in the haemolytic disease gene panels. HK activity was normal in a severely affected patient with a homozygous HK1 c.2599C>T, p.(His867Tyr) variant, but the affinity for ATP was reduced, hampering the HK function. In cases of HNSHA, kinetic studies should be considered in the functional studies of HK. We reviewed the literature of previously published patients to provide better insight into this rare disease and add to the understanding of genotype-phenotype correlation.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Hexokinase , Promoter Regions, Genetic , Humans , Hexokinase/genetics , Hexokinase/deficiency , Female , Male , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Infant , Alleles , Child, Preschool , Phenotype , Child , Genotype
7.
Biomedicines ; 12(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38397932

ABSTRACT

Basal cell nevus syndrome (BCNS) is an inherited disorder characterized mainly by the development of basal cell carcinomas (BCCs) at an early age. BCNS is caused by heterozygous small-nucleotide variants (SNVs) and copy-number variants (CNVs) in the Patched1 (PTCH1) gene. Genetic diagnosis may be complicated in mosaic BCNS patients, as accurate SNV and CNV analysis requires high-sensitivity methods due to possible low variant allele frequencies. We compared test outcomes for PTCH1 CNV detection using multiplex ligation-probe amplification (MLPA) and digital droplet PCR (ddPCR) with samples from a BCNS patient heterozygous for a PTCH1 CNV duplication and the patient's father, suspected to have a mosaic form of BCNS. ddPCR detected a significantly increased PTCH1 copy-number ratio in the index patient's blood, and the father's blood and tissues, indicating that the father was postzygotic mosaic and the index patient inherited the CNV from him. MLPA only detected the PTCH1 duplication in the index patient's blood and in hair and saliva from the mosaic father. Our data indicate that ddPCR more accurately detects CNVs, even in low-grade mosaic BCNS patients, which may be missed by MLPA. In general, quantitative ddPCR can be of added value in the genetic diagnosis of mosaic BCNS patients and in estimating the recurrence risk for offspring.

8.
Clin Genet ; 104(6): 686-693, 2023 12.
Article in English | MEDLINE | ID: mdl-37574199

ABSTRACT

We studied a patient with mitochondrial DNA depletion in skeletal muscle and a multiorgan phenotype, including fatal encephalomyopathy, retinopathy, optic atrophy, and sensorineural hearing loss. Instead of pathogenic variants in the mitochondrial maintenance genes, we identified previously unpublished variant in DHX16 gene, a de novo heterozygous c.1360C>T (p. Arg454Trp). Variants in DHX16 encoding for DEAH-box RNA helicase have previously been reported only in five patients with a phenotype called as neuromuscular oculoauditory syndrome including developmental delay, neuromuscular symptoms, and ocular or auditory defects with or without seizures. We performed functional studies on patient-derived fibroblasts and skeletal muscle revealing, that the DHX16 expression was decreased. Clinical features together with functional data suggest, that our patient's disease is associated with a novel pathogenic DHX16 variant, and mtDNA depletion could be a secondary manifestation of the disease.


Subject(s)
Metabolism, Inborn Errors , Optic Atrophy , Retinal Diseases , Humans , DNA, Mitochondrial/genetics , Muscle, Skeletal/pathology , Optic Atrophy/pathology , RNA Helicases , Infant
9.
Eur J Med Genet ; 66(8): 104807, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385405

ABSTRACT

Jansen de Vries syndrome (JDVS, OMIM: 617450) is a rare neurodevelopmental disorder associated with hypotonia, behavioral features, high threshold to pain, short stature, ophthalmological abnormalities, dysmorphism and occasionally a structural cardiac condition. It is caused by truncating variants of the last and penultimate exons of PPM1D. So far, 21 patients with JVDS have been reported in the literature. Here, we describe four novel cases of JVDS and review the current literature. Notably, our patients 1, 3 and 4 do not have intellectual disability albeit they have significant developmental difficulties. Thus, the phenotype may span from a classic intellectual disability syndrome to a milder neurodevelopmental disorder. Interestingly, two of our patients have received successful growth hormone treatment. Considering the phenotype of all the known JDVS patients, a cardiological consultation is recommended, as at least 7/25 patients showed a structural cardiac defect. Episodic fever and vomiting may associate with hypoglycemia and may even mimic a metabolic disorder. We also report the first JDVS patient with a mosaic gene defect and a mild neurodevelopmental phenotype.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Neurodevelopmental Disorders , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , Abnormalities, Multiple/genetics , Mutation , Neurodevelopmental Disorders/genetics , Phenotype
10.
Eur J Hum Genet ; 31(4): 469-473, 2023 04.
Article in English | MEDLINE | ID: mdl-36509837

ABSTRACT

Jones syndrome is a rare dominantly inherited syndrome characterized by gingival fibromatosis and progressive sensorineural hearing loss becoming symptomatic in the second decade of life. Here, we report a father and his two daughters presenting with a typical Jones syndrome (OMIM %135550) phenotype. Exome sequencing identified a repressor element 1-silencing transcription factor (REST, OMIM *600571) (NM_005612.5) c.2670_2673del p.(Glu891Profs*6) heterozygous variant segregating with Jones syndrome in the family. We review the clinical data from all previously published patients with Jones syndrome and previously published patients with pathogenic REST variants associated with gingival fibromatosis or sensorineural hearing loss. This study suggests that pathogenic REST variants cause Jones syndrome.


Subject(s)
Deafness , Fibromatosis, Gingival , Hearing Loss, Sensorineural , Humans , Fibromatosis, Gingival/genetics , Pedigree , Deafness/genetics , Hearing Loss, Sensorineural/genetics
11.
Eur Child Adolesc Psychiatry ; 32(10): 2043-2047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35796883

ABSTRACT

Salla disease (SD) is a rare lysosomal storage disorder characterised by intellectual disability ataxia, athetosis, nystagmus, and central nervous system demyelination. Although the neurological spectrum of SD's clinical phenotype is well defined, psychotic symptoms in SD remain unreported. We reviewed the presence of psychiatric symptoms in patients diagnosed with SD. Medical records of all SD patients at Oulu University Hospital during the years 1982-2015 were systematically reviewed to evaluate the presence of psychiatric symptoms. Psychiatric symptoms were frequently associated with SD (10/24, 42%), and two patients were described as developing psychosis as adolescents. We reported their clinical characteristics in detail and assessed the prevalence of psychiatric symptoms in a cohort of 24 patients. Other psychiatric factors associated with SD were sleeping disorders (8/24, 32%), aggressive behaviour disorders or restlessness (6/24, 25%), and off-label antipsychotic medication (4/24, 17%). This report expands the knowledge of the phenotypic spectrum of SD and demonstrates the importance of recognising the possibility of psychiatric symptoms, including psychosis, in persons with SD.


Subject(s)
Antipsychotic Agents , Mental Disorders , Psychotic Disorders , Sialic Acid Storage Disease , Adolescent , Humans , Sialic Acid Storage Disease/drug therapy , Sialic Acid Storage Disease/genetics , Mental Disorders/diagnosis , Mental Disorders/epidemiology , Mental Disorders/drug therapy , Psychotic Disorders/diagnosis , Psychotic Disorders/epidemiology , Psychotic Disorders/drug therapy , Antipsychotic Agents/therapeutic use , Phenotype
12.
Int J Cancer ; 152(3): 429-435, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36161273

ABSTRACT

ATM is generally described as a moderate-risk breast cancer susceptibility gene. However, some of ATM variants might encounter higher risk. ATM c.7570G>C, p.Ala2524Pro, (rs769142993) is a pathogenic Finnish founder variant causative for recessively inherited ataxia-telangiectasia. At cellular level, it has been reported to have a dominant-negative effect. ATM c.7570G>C has recurrently been described in Finnish breast cancer families and unselected case cohorts collected from different parts of the country, but the rarity of the allele (MAF 0.0002772 in Finns) and lack of confirming segregation analyses have prevented any conclusive risk estimates. Here, we describe seven families from genetic counseling units with ATM c.7570G>C variant showing co-segregation with breast cancer. Further analysis of the unselected breast cancer cohort from Northern Finland (n = 1822), a geographical region previously indicated to have enrichment of the variant, demonstrated that c.7570G>C significantly associates with breast cancer, and the risk is estimated as high (odds ratio [OR] = 8.5, 95% confidence interval [CI] = 1.04-62.46, P = .018). Altogether, these results place ATM c.7570G>C variant among the high-risk alleles for breast cancer, which should be taken into consideration in genetic counseling.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Alleles , Cell Cycle Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Tumor Suppressor Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Genetic Predisposition to Disease , DNA-Binding Proteins/genetics
13.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36285626

ABSTRACT

Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.


Subject(s)
Translational Research, Biomedical , Finland/epidemiology , Phenotype
14.
Clin Genet ; 102(5): 444-450, 2022 11.
Article in English | MEDLINE | ID: mdl-35908151

ABSTRACT

HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.


Subject(s)
Codon, Nonsense , Intellectual Disability , Prolyl Hydroxylases/metabolism , Amino Acids , Catalytic Domain , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Muscle Hypotonia/genetics , Phenotype , Syndrome
15.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35861666

ABSTRACT

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Dwarfism , Intellectual Disability , Tooth Abnormalities , Pregnancy , Female , Humans , Facies , Tooth Abnormalities/genetics , Bone Diseases, Developmental/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Comparative Genomic Hybridization , Repressor Proteins/genetics , Phenotype , Dwarfism/genetics , European People
16.
J Clin Med ; 11(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35407445

ABSTRACT

Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50−60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes.

17.
Ophthalmic Genet ; 43(2): 152-158, 2022 04.
Article in English | MEDLINE | ID: mdl-35240912

ABSTRACT

BACKGROUND: Pathogenic variants in the CEP78 gene can present as atypical Usher syndrome or as retinitis pigmentosa. Here, we present a review of all reported cases of CEP78 variants in the literature to date and present a novel variant of CEP78, c.1261_1262delinsA, in a consanguineous northern Finnish family with two individuals. MATERIALS AND METHODS: Our patients were first discovered in a registry-based study. Later, they gave their written consent for this study. In order to describe the genotype and phenotype, their historic clinical patient data and genetic data were gathered, and a clinical ophthalmic examination and an audiogram were performed. For this review, a PubMed search using the keyword CEP78 was carried out. The first article on CEP78 was published in the year 2007, and the publications from the years 2007-2021 were included. RESULTS: A large gene panel identified a homozygous CEP78 c.1261_1262delinsA variant in two affected siblings. In addition to the classical signs of retinitis pigmentosa, both siblings had large round atrophic spots in the mid periphery, and hyperautofluorescence of the macula. Patient 1 had age-related hearing impairment; patient 2 had normal hearing. In total, 20 articles have been published about CEP78. Eight of these papers report patient data with the affected individuals typically having retinal dystrophy combined with sensorineural hearing impairment, classified as atypical Usher syndrome. CONCLUSIONS: Here, we present a comprehensive review of CEP78 and expand the knowledge of pathogenic CEP78 variants and the phenotypic variety.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Cell Cycle Proteins/genetics , Frameshift Mutation , Humans , Mutation , Pedigree , Phenotype , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Usher Syndromes/genetics
18.
Mol Genet Genomic Med ; 10(3): e1866, 2022 03.
Article in English | MEDLINE | ID: mdl-35150090

ABSTRACT

BACKGROUND: The genetic architecture of hearing impairment in Finland is largely unknown. Here, we investigated two Finnish families with autosomal recessive nonsyndromic symmetrical moderate-to-severe hearing impairment. METHODS: Exome and custom capture next-generation sequencing were used to detect the underlying cause of hearing impairment. RESULTS: In both Finnish families, we identified a homozygous pathogenic splice site variant c.637+1G>T in CAPB2 that is known to cause autosomal recessive nonsyndromic hearing impairment. Four CABP2 variants have been reported to underlie autosomal recessive nonsyndromic hearing impairment in eight families from Iran, Turkey, Pakistan, Italy, and Denmark. Of these variants, the pathogenic splice site variant c.637+1G>T is the most prevalent. The c.637+1G>T variant is enriched in the Finnish population, which has undergone multiple bottlenecks that can lead to the higher frequency of certain variants including those involved in disease. CONCLUSION: We report two Finnish families with hearing impairment due to the CABP2 splice site variant c.637+1G>T.


Subject(s)
Deafness , Hearing Loss , Deafness/genetics , Finland , Genes, Recessive , Hearing Loss/genetics , Humans
19.
Eur J Hum Genet ; 30(5): 619-627, 2022 05.
Article in English | MEDLINE | ID: mdl-35087184

ABSTRACT

Biallelic loss-of-function variants in the SMG9 gene, encoding a regulatory subunit of the mRNA nonsense-mediated decay (NMD) machinery, are reported to cause heart and brain malformation syndrome. Here we report five patients from three unrelated families with intellectual disability (ID) and a novel pathogenic SMG9 c.551 T > C p.(Val184Ala) homozygous missense variant, identified using exome sequencing. Sanger sequencing confirmed recessive segregation in each family. SMG9 c.551T > C p.(Val184Ala) is most likely an autozygous variant identical by descent. Characteristic clinical findings in patients were mild to moderate ID, intention tremor, pyramidal signs, dyspraxia, and ocular manifestations. We used RNA sequencing of patients and age- and sex-matched healthy controls to assess the effect of the variant. RNA sequencing revealed that the SMG9 c.551T > C variant did not affect the splicing or expression level of SMG9 gene products, and allele-specific expression analysis did not provide evidence that the nonsense mRNA-induced NMD was affected. Differential gene expression analysis identified prevalent upregulation of genes in patients, including the genes SMOX, OSBP2, GPX3, and ZNF155. These findings suggest that normal SMG9 function may be involved in transcriptional regulation without affecting nonsense mRNA-induced NMD. In conclusion, we demonstrate that the SMG9 c.551T > C missense variant causes a neurodevelopmental disorder and impacts gene expression. NMD components have roles beyond aberrant mRNA degradation that are crucial for neurocognitive development.


Subject(s)
Intellectual Disability , Intracellular Signaling Peptides and Proteins , Nonsense Mediated mRNA Decay , Alleles , Homozygote , Humans , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , RNA, Messenger/genetics
20.
J Inherit Metab Dis ; 45(2): 223-234, 2022 03.
Article in English | MEDLINE | ID: mdl-34622459

ABSTRACT

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.


Subject(s)
Hypoglycemia , Phosphoenolpyruvate Carboxykinase (GTP) , Adult , Carbohydrate Metabolism, Inborn Errors , Child , Gluconeogenesis , Humans , Hypoglycemia/genetics , Hypoglycemic Agents , Ketone Bodies , Liver Diseases , Phenotype , Phosphoenolpyruvate Carboxykinase (GTP)/deficiency , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...