Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2795: 65-73, 2024.
Article in English | MEDLINE | ID: mdl-38594528

ABSTRACT

The production of stomata, the epidermal pores of plants, is influenced by diverse environmental signals including high temperature. To assess its impact on stomatal formation, researchers need to grow plants in a carefully designed regime under controlled conditions and capture clear, microscopic views of the epidermis. Here, we describe a procedure to study the effect of high temperature on stomatal formation. This method can generate high-quality epidermal images of cotyledons, leaves, and hypocotyl of young Arabidopsis seedlings, which allow the determination of the pattern, density, and index of stomata on these tissues. Besides temperature, the protocol can serve as a general approach to examine stomatal phenotype and the effect of other external signals on stomatal formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Plant Stomata/genetics , Temperature , Arabidopsis/genetics , Plant Leaves/metabolism , Plants/metabolism , Gene Expression Regulation, Plant
2.
Nat Commun ; 12(1): 3403, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099707

ABSTRACT

Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata-essential pores for gas exchange in plants-is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types.


Subject(s)
Arabidopsis/growth & development , Gene Expression Regulation, Plant/radiation effects , Light , Plant Development/genetics , Plant Stomata/growth & development , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Hypocotyl/metabolism , Mesophyll Cells/metabolism , Paracrine Communication/genetics , Paracrine Communication/radiation effects , Plant Development/radiation effects , Plant Epidermis/metabolism , Plant Stomata/radiation effects , Plants, Genetically Modified , Protein Stability/radiation effects
3.
J Exp Bot ; 70(18): 4643-4656, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31106838

ABSTRACT

As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.


Subject(s)
Plant Proteins/genetics , Plants/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Organic Cation Transport Proteins , Plant Proteins/metabolism , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...