Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826303

ABSTRACT

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.

2.
Small Methods ; 7(10): e2300218, 2023 10.
Article in English | MEDLINE | ID: mdl-37421204

ABSTRACT

Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.


Subject(s)
Microscopy , Synapses , Synapses/metabolism , Synaptic Transmission/physiology , Neurons , Calcium/metabolism
3.
Sci Rep ; 13(1): 2138, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747045

ABSTRACT

Understanding the most relevant hematological/biochemical characteristics, pre-existing health conditions and complications in survivors and non-survivor will aid in predicting COVID-19 patient mortality, as well as intensive care unit (ICU) referral and death. A literature review was conducted for COVID-19 mortality in PubMed, Scopus, and various preprint servers (bioRxiv, medRxiv and SSRN), with 97 observational studies and preprints, consisting of survivor and non-survivor sub-populations. This meta/network analysis comprised 19,014 COVID-19 patients, consisting of 14,359 survivors and 4655 non-survivors. Meta and network analyses were performed using META-MAR V2.7.0 and PAST software. The study revealed that non-survivors of COVID-19 had elevated levels of gamma-glutamyl transferase and creatinine, as well as a higher number of neutrophils. Non-survivors had fewer lymphocytes and platelets, as well as lower hemoglobin and albumin concentrations. Age, hypertension, and cerebrovascular disease were shown to be the most influential risk factors among non-survivors. The most common complication among non-survivors was heart failure, followed by septic shock and respiratory failure. Platelet counts, creatinine, aspartate aminotransferase, albumin, and blood urea nitrogen levels were all linked to ICU admission. Hemoglobin levels preferred non-ICU patients. Lower levels of hemoglobin, lymphocytes, and albumin were associated with increased mortality in ICU patients. This meta-analysis showed that inexpensive and fast biochemical and hematological tests, as well as pre-existing conditions and complications, can be used to estimate the risk of mortality in COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Creatinine , Hospitalization , Albumins
4.
Cells ; 11(17)2022 08 28.
Article in English | MEDLINE | ID: mdl-36078083

ABSTRACT

The embryonic mouse fibroblast cell line NIH3T3 is widely used in life science research, including the study of cell cycle control and primary cilia. Fibroblasts are the most important cell type in connective tissue, as they produce components of the extracellular matrix and determine tissue architecture. However, they are very heterogeneous and consist of subtypes specific to their organ of residence, among others. The NIH3T3 cell line was derived from whole mouse embryos that developed to pre-birth and is therefore most likely composed of different fibroblast subtypes. Furthermore, prolonged proliferation may have influenced their cellular composition. A heterogeneous cell population is unsuitable for any sophisticated research project. We found that the proportion of ciliated cells in the total NIH3T3 cell population was highly variable and asked whether this was a consequence of cellular heterogeneity and what molecular signatures were associated with it. We have established sub-cell lines by clonal expansion of single cells and characterized them morphologically and molecularly. Eventually, a myofibroblast-like and a fibroblast-like cell line were generated that differ in ciliation and proliferation. These homogeneous cell lines are valuable for a more detailed study of their molecular signatures, not least to uncover further the molecular pathways that contribute to the formation of the primary cilium.


Subject(s)
Fibroblasts , Myofibroblasts , Animals , Embryo, Mammalian , Extracellular Matrix , Fibroblasts/metabolism , Mice , NIH 3T3 Cells
5.
Cells ; 10(2)2021 02 14.
Article in English | MEDLINE | ID: mdl-33672816

ABSTRACT

The wound healing response of fibroblasts critically depends on the primary cilium, a sensory organelle protruding into the environment and comprising a stable axonemal structure. A characteristic marker for primary cilia is acetylation of axonemal tubulin. Although formation of primary cilia is under cell cycle control, the environmental cues affecting ciliation are not fully understood. Our purpose was, therefore, to study the impact of culture conditions on cilia formation in NIH3T3 fibroblasts. We quantified ciliation in different NIH3T3 sub-cell lines and culture conditions by immunodetection of primary cilia and counting. Quantitative Western blotting, qRT-PCR, and proliferation assays completed our investigation. We observed large differences between NIH3T3 sub-cell lines in their ability to generate acetylated primary cilia that correlated with cytoplasmic tubulin acetylation. We found no increased activity of the major tubulin deacetylase, HDAC6, but instead reduced expression of the α-tubulin acetyltransferase 1 (Atat1) as being causative. Our observations demonstrate that cells with reduced expression of Atat1 and tubulin acetylation proliferate faster, eventually displacing all other cells in the population. Expression of Atat1 and tubulin acetylation are therefore selective forces in cell competition.


Subject(s)
Acetyltransferases/metabolism , Cell Competition/physiology , Tubulin/metabolism , Acetylation , Acetyltransferases/genetics , Animals , Cilia/metabolism , Fibroblasts/metabolism , Mice , NIH 3T3 Cells , Protein Processing, Post-Translational/physiology
6.
Protein Pept Lett ; 26(10): 768-775, 2019.
Article in English | MEDLINE | ID: mdl-31618171

ABSTRACT

INTRODUCTION: Metallothioneins (MTs) are members of a family of low molecular weight and cysteine-rich proteins that are involved in heavy metal homeostasis and detoxification in living organisms. Plants have multiple MT types that are generally divided into four subgroups according to the arrangement of Cys residues. METHODS: In the present study the E. coli cells which heterologously express four different rice MT (OsMT) isoforms were analyzed for the accumulation of two forms of chromium, Cr3+ and Cr6+. RESULTS: The results show that the transgenic bacteria were more tolerant than control cells when they were grown up in the medium comprising Cr(NO3)3.9H2O or Na2CrO4. The cells expressing OsMT1, OsMT2, OsMT3 and OsMT4 give rise to 6.5-, 2.7-, 5.5- and 2.1-fold improvements on the accumulation capacity for Cr3+ and 9-, 3-, 5- and 3- fold Cr6+ respectively compared with comparison to the control strain. Furthermore, the purified recombinant GST-OsMTs were tested for their binding ability to Cr+3 and Cr+6 in vitro. DISCUSSION: The data show that the recombinant GST-OsMT1 and GST-OsMT2 were able to bind both Cr3+ and Cr6+, in vitro. However, their binding strength was low with respect to previous tested divalent ions like Cd2+.


Subject(s)
Chromium/chemistry , Metallothionein/chemistry , Oryza/chemistry , Plant Proteins/chemistry , Recombinant Proteins/chemistry , Amino Acid Sequence , Cations/chemistry , Cysteine/chemistry , Escherichia coli/genetics , Hydrogen-Ion Concentration , Metallothionein/genetics , Plant Proteins/genetics , Protein Binding , Protein Isoforms , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...