Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(5): 2637-2648, 2023 May.
Article in English | MEDLINE | ID: mdl-36786196

ABSTRACT

BACKGROUND: Robust optimization (RO) has been proposed to mitigate breathing motion uncertainty during treatment in intensity-modulated radiation therapy (IMRT) planning for breast or lung cancer. RO is a pessimistic approach that implicitly trades off average-case for worst-case treatment plan quality. Pareto robust optimization (PRO) provides a mechanism for improving nonworst-case plan outcomes, but often remains overly conservative in the average case. PURPOSE: The goal of this study is to characterize the trade-off between the optimality of robust IMRT plans in the worst case and the treatment quality in nonworst-case realizations of breathing motion. We provide a light Pareto robust optimization (LPRO) method for IMRT and test its clinical viability for improving the average-case plan quality while preserving robustness, in comparison to RO and PRO plans. METHODS: Five clinical left-sided breast cancer patients were included in the study, each with an associated 4D-CT dataset approximating their breathing cycle. Using simulation, 50 different breathing patterns were generated for each patient. A first-stage optimization was solved with the objective of cardiac sparing while ensuring robustness on the target dose under breathing uncertainty. Next, a second-stage objective of overdose minimization was considered to improve plan quality in a controlled LPRO framework. For the simulated breathing scenarios, the trade-off between loss of average cardiac sparing at worst-case and the overdose to the breast was quantified by calculating the accumulated dose for each plan in each breathing scenario. Finally, the RO, PRO, and LPRO plans were each evaluated using eight clinical dose-volume criteria on the target and organs at risk. RESULTS: The LPRO models allowed for significantly sharper dose falloffs in the expected dose instances, relative to both RO and PRO models. Plans began looking valid for delivery with average allowances of as little as +0.1 Gy additional dose to the heart, and most patients experienced diminishing returns beyond +0.2 Gy. CONCLUSIONS: Without sacrificing robustness, the LPRO approach produces viable plans with true total-target irradiation. Furthermore, the plans produced were able to reduce the nonworst-case downside typical of RO, without the characteristic overdosing or average-case pessimism seen in prior models.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Lung Neoplasms/radiotherapy , Respiration , Radiotherapy Dosage , Computer Simulation , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects
2.
Photosynth Res ; 117(1-3): 423-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23896796

ABSTRACT

In this report, gold or silver deposited on layered manganese oxide has been synthesized by a simple method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrometry, atomic absorption spectroscopy, and energy-dispersive X-ray mapping. The gold deposited on layered manganese oxide showed efficient catalytic activity toward water oxidation in the presence of cerium(IV) ammonium nitrate. The properties associated with this compound suggest it is a functional model for the water-oxidizing complex in photosystem II.


Subject(s)
Gold/chemistry , Manganese Compounds/chemistry , Models, Molecular , Oxides/chemistry , Photosystem II Protein Complex/metabolism , Silver/chemistry , Water/metabolism , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxygen/metabolism , X-Ray Diffraction
3.
Dalton Trans ; 41(36): 11026-31, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22858683

ABSTRACT

Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(IV) ammonium nitrate and hydrogen peroxide, respectively.

4.
J R Soc Interface ; 9(75): 2383-95, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22809849

ABSTRACT

There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese-calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups.


Subject(s)
Biomimetic Materials/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Catalysis , Metal Nanoparticles/ultrastructure , Models, Chemical , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...