Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 384(3): 372-381, 2023 03.
Article in English | MEDLINE | ID: mdl-36507847

ABSTRACT

Although there are no Food and Drug Administration-approved treatments for cocaine use disorder, several modafinil analogs have demonstrated promise in reducing cocaine self-administration and reinstatement in rats. Furthermore, the range of dopamine transporter (DAT) compounds provides an opportunity to develop pharmacotherapeutics without abuse liability. This study extended the comparison of JJC8-088 and JJC8-091, the former compound having higher DAT affinity and predicted abuse liability, to rhesus monkeys using a concurrent cocaine versus food schedule of reinforcement. First, binding to striatal DAT was examined in cocaine-naïve monkey tissue. Next, intravenous pharmacokinetics of both JJC compounds were evaluated in cocaine-experienced male monkeys (n = 3/drug). In behavioral studies, acute and chronic administration of both compounds were evaluated in these same monkeys responding under a concurrent food versus cocaine (0 and 0.003-0.1 mg/kg per injection) schedule of reinforcement. In nonhuman primate striatum, JJC8-088 had higher DAT affinity compared with JJC8-091 (14.4 ± 9 versus 2730 ± 1270 nM, respectively). Both JJC compounds had favorable plasma pharmacokinetics for behavioral assessments, with half-lives of 1.1 hours and 3.5 hours for JJC8-088 (0.7 mg/kg, i.v.) and JJC8-091 (1.9 mg/kg, i.v.), respectively. Acute treatment with both compounds shifted the cocaine dose-response curve to the left. Chronic treatment with JJC8-088 decreased cocaine choice in two of the three monkeys, whereas JJC8-091 only modestly reduced cocaine allocation in one monkey. Differences in affinities of JJC8-091 DAT binding in monkeys compared with rats may account for the poor rodent-to-monkey translation. Future studies should evaluate atypical DAT blockers in combination with behavioral interventions that may further decrease cocaine choice. SIGNIFICANCE STATEMENT: Cocaine use disorder (CUD) remains a significant public health problem with no Food and Drug Administration-approved treatments. The ability of drugs that act in the brain in a similar manner to cocaine, but with lower abuse liability, has clinical implications for a treatment of CUD.


Subject(s)
Cocaine , Male , Rats , Animals , Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Macaca mulatta/metabolism , Dopamine Uptake Inhibitors/pharmacology , Self Administration , Dose-Response Relationship, Drug
2.
Peptides ; 152: 170784, 2022 06.
Article in English | MEDLINE | ID: mdl-35288251

ABSTRACT

Doxorubicin (Dox), an effective chemotherapeutic, can cause cumulative dose-dependent cardiovascular toxicity, which may manifest as vascular dysfunction leading to long-term end-organ damage. Currently, there are no effective treatments to mitigate Dox-induced vascular damage in cancer patients, particularly pediatric patients. We showed that angiotensin-(1-7) [Ang-(1-7)], an endogenous peptide hormone, mitigated cardiac damage in Dox-treated juvenile rats. In this study assessing aortic stiffness, juvenile male and female rats were administered a clinically equivalent dose of Dox (21-24 mg/kg) over 6 weeks, in the presence and absence of Ang-(1-7) [24 µg/kg/h]. Aortic function was measured using echocardiography. Ang-(1-7) reduced the Dox-mediated increase in pulse wave velocity, a measure of arterial stiffness (males: p < 0.05; females: p < 0.001) as compared in control animals. Dox decreased aortic lumen diameter (p < 0.0001) and increased wall thickness (p < 0.01) in males, which was attenuated by Ang-(1-7). In male but not female aortic arches, Dox increased media hypertrophy (p < 0.05) and reduced elastin content (p < 0.001), which were prevented by Ang-(1-7). Conversely, Dox increased fibrosis (p < 0.0001) in juvenile female rats, which was reduced by Ang-(1-7). Adjunct Ang-(1-7) prevented the Dox-induced increase in total cell and nuclear pERK1/2 in the aortic intima and media of male rats and nuclear pSMAD2 in the intimal and medial regions of the aortic arches of both sexes. These results demonstrate that Ang-(1-7) attenuated Dox-induced aortic dysfunction in both sexes of juvenile rats, albeit through different mechanisms, suggesting that Ang-(1-7) may serve as an effective adjuvant to ameliorate cardiovascular and long-term end-organ damage in pediatric patients produced by anthracyclines.


Subject(s)
Angiotensin II , Aorta, Thoracic , Angiotensin I , Animals , Doxorubicin , Female , Humans , Male , Peptide Fragments , Pulse Wave Analysis , Rats , Rats, Sprague-Dawley
3.
Am J Physiol Heart Circ Physiol ; 318(4): H883-H894, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32083974

ABSTRACT

Doxorubicin (Dox) is an effective chemotherapeutic for a variety of pediatric malignancies. Unfortunately, Dox administration often results in a cumulative dose-dependent cardiotoxicity that manifests with marked oxidative stress, leading to heart failure. Adjunct therapies are needed to mitigate Dox cardiotoxicity and enhance quality of life in pediatric patients with cancer. Angiotensin-(1-7) [Ang-(1-7)] is an endogenous hormone with cardioprotective properties. This study investigated whether adjunct Ang-(1-7) attenuates cardiotoxicity resulting from exposure to Dox in male and female juvenile rats. Dox significantly reduced body mass, and the addition of Ang-(1-7) had no effect. However, adjunct Ang-(1-7) prevented Dox-mediated diastolic dysfunction, including markers of decreased passive filling as measured by reduced early diastole mitral valve flow velocity peak (E) (P < 0.05) and early diastole mitral valve annulus peak velocity (e'; P < 0.001) and increased E/e' (P < 0.001), an echocardiographic measure of diastolic dysfunction. Since Dox treatment increases reactive oxygen species (ROS), the effect of Ang-(1-7) on oxidative by-products and enzymes that generate or reduce ROS was investigated. In hearts of male and female juvenile rats, Dox increased NADPH oxidase 4 (P < 0.05), a major cardiovascular NADPH oxidase isozyme that generates ROS, as well as 4-hydroxynonenal (P < 0.001) and malondialdehyde (P < 0.001), markers of lipid peroxidation; Ang-(1-7) prevented these effects of Dox. Cotreatment with Dox and Ang-(1-7) increased the antioxidant enzymes SOD1 (male: P < 0.05; female: P < 0.01) and catalase (P < 0.05), which likely contributed to reduced ROS. These results demonstrate that Ang-(1-7) prevents diastolic dysfunction in association with a reduction in ROS, suggesting that the heptapeptide hormone may serve as an effective adjuvant to improve Dox-induced cardiotoxicity.NEW & NOTEWORTHY Ang-(1-7) is a clinically safe peptide hormone with cardioprotective and antineoplastic properties that could be used as an adjuvant therapy to improve cancer treatment and mitigate the long-term cardiotoxicity associated with doxorubicin in pediatric patients with cancer.


Subject(s)
Angiotensin I/therapeutic use , Antineoplastic Agents/toxicity , Antioxidants/therapeutic use , Doxorubicin/toxicity , Heart Diseases/drug therapy , Peptide Fragments/therapeutic use , Animals , Cardiotoxicity , Catalase/metabolism , Female , Heart Diseases/etiology , Heart Rate , Male , Malondialdehyde/metabolism , Mitral Valve/physiopathology , Myocardium/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
4.
Genetics ; 199(1): 151-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339611

ABSTRACT

We show that loss-of-function mutations in kinases of the MLK-1 pathway (mlk-1, mek-1, and kgb-1/jnk) function cell-autonomously in neurons to suppress defects in synapse formation and axon termination caused by rpm-1 loss of function. Our genetic analysis also suggests that the phosphatase PPM-1, like RPM-1, is a potential inhibitor of kinases in the MLK-1 pathway.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Kinase 1/genetics , MAP Kinase Signaling System , Neurogenesis , Animals , Axons/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase 1/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...