Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Invest ; 52(7): 779-795, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37610337

ABSTRACT

In clinical practice, the low immunogenicity and low stability of the DNA plasmid vaccine candidates are two significant shortcomings in their application against infectious diseases. To overcome these two disadvantages, the plasmid expressing IL-29 (pIL-29) as a genetic adjuvant and polylactic-co-glycolic acid (PLGA) as a non-viral delivery system were used, respectively. In this study, the pIL-29 encapsulated in PLGA nanoparticles (nanoIL-29) and the pgD1 encapsulated in PLGA nanoparticles (nanoVac) were simultaneously applied to boost immunologic responses against HSV-1. We generated spherical nanoparticles with encapsulation efficiency of 75 ± 5% and sustained the release of plasmids from them. Then, Balb/c mice were subcutaneously immunized twice with nanoVac+nanoIL-29, Vac+IL-29, nanoVac, Vac, nanoIL-29, and/or IL-29 in addition to negative and positive control groups. Cellular immunity was evaluated via lymphocyte proliferation assay, cytotoxicity test, and IFN-γ, IL-4, and IL-2 measurements. Mice were also challenged with 50X LD50 of HSV-1. The nanoVac+nanoIL-29 candidate vaccine efficiently enhances CTL and Th1-immune responses and increases the survival rates by 100% in mice vaccinated by co-administration of nanoVac and nanoIL-29 against the HSV-1 challenge. The newly proposed vaccine is worth studying in further clinical trials, because it could effectively improve cellular immune responses and protected mice against HSV-1.


Subject(s)
Herpesvirus 1, Human , Nanoparticles , Vaccines, DNA , Animals , Mice , Glycols , Cytokines , Mice, Inbred BALB C
2.
Microb Pathog ; 140: 103932, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31857237

ABSTRACT

Today's, vaccination is the most cost-effective approaches for preventing infectious diseases. In this strategy, adjuvants play an important role. Propolis from honey bee can stimulate the immune system and several studies have shown the modulating effects of Propolis on the immune responses. Here, the adjuvant effects of aqueous and alcoholic extracts of Propolis were studied on the multi-epitope vaccines against HIV-1. A recombinant vaccine against HIV-1 was prepared and BALB/c mice were immunized. subcutaneously on day 0 with 100 µl of candidate vaccine (10 µg) formulated in an alcoholic extract of Propolis. The second group of mice was immunized with the vaccine (10 µg) formulated in aqueous extract of Propolis. Also, candidate vaccine was formulated in Freund's and Alum adjuvants in the third and fourth groups. Experimental mice were immunized three times with two week intervals under the same conditions and suitable control groups. After final injection, lymphocyte proliferation was measured by BrdU method, IL-4 and IFN-γ cytokines, specific total IgG antibodies, IgG1 and IgG2a isotypes were evaluated using ELISA. The results show that the aqueous and alcoholic extracts were able to enhance lymphocyte proliferation, IL-4 and IFN-γ cytokines and antibody responses with dominant IgG1 pattern and comparable to Freund's and Alum adjuvants. It seems that aqueous and alcoholic extracts of Propolis show adjuvant activity and may be useful for vaccine formulation.


Subject(s)
Adjuvants, Immunologic/pharmacology , HIV-1/immunology , Propolis/pharmacology , Alum Compounds/pharmacology , Animals , Antibody Formation/drug effects , Cytokines/drug effects , Freund's Adjuvant/pharmacology , Immunity, Cellular/drug effects , Immunoglobulin G/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/immunology
3.
APMIS ; 125(6): 596-603, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28493367

ABSTRACT

Cytokines are mediators for polarization of immune response in vaccines. Studies show that co-immunization of DNA vaccines with granulocyte-macrophage colony-stimulating factor (GM-CSF) can increase immune responses. Here, experimental mice were immunized with HIV-1tat/pol/gag/env DNA vaccine with GM-CSF and boosted with recombinant vaccine. Lymphocyte proliferation with Brdu and CTL activity, IL-4, IFN-γ, IL-17 cytokines, total antibody, and IgG1 and IgG2a isotypes were assessed with ELISA. Results show that GM-CSF as adjuvant in DNA immunization significantly increased lymphocyte proliferation and IFN-γ cytokines, but CTL response was tiny increased. Also GM-CSF as adjuvant decreased IL-4 cytokine vs mere vaccine group. IL-17 in the group that immunized with mixture of DNA vaccine/GM-CSF was significantly increased vs DNA vaccine group. Result of total antibody shows that GM-CSF increased antibody response in which both IgG1 and IgG2a increased. Overall, results confirmed the beneficial effect of GM-CSF as adjuvant to increase vaccine immunogenicity. The hallmark result of this study was to increase IL-17 cytokine with DNA vaccine/GM-CSF immunized group. This study for the first time provides the evidence of the potency of GM-CSF in the induction of IL-17 in response to a vaccine, which is important for control of infection such as HIV-1.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Th17 Cells/immunology , Vaccines, DNA/immunology , AIDS Vaccines/administration & dosage , Animals , Cell Proliferation , Cytokines/metabolism , Cytotoxicity Tests, Immunologic , Enzyme-Linked Immunosorbent Assay , Female , HIV Antibodies/blood , Immunoglobulin G/blood , Mice, Inbred BALB C , Vaccines, DNA/administration & dosage , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...