Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 942: 175536, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36693552

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Ceramides/biosynthesis , Ceramides/metabolism , Fibroblast Growth Factor 2/metabolism , Inflammation/metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism
2.
Mol Biol Rep ; 49(5): 3597-3608, 2022 May.
Article in English | MEDLINE | ID: mdl-35235156

ABSTRACT

BACKGROUND: In this study, the optimized niosomal formulation containing paclitaxel using non-ionic surfactants and cholesterol was designed and its cytotoxic effects against different breast cancer cell lines and apoptosis gene expression analysis were also investigated. METHODS AND RESULTS: Due to enhancing equation variables, the Box-Behnken method has been applied. Lipid/drug molar ratio, the amounts of Span 60, and cholesterol were selected as the target for optimization. The particle size of niosome loaded paclitaxel and entrapment efficiency proportion have been considered in the role of dependent variables. Then the cytotoxic activity of the optimized formulation was evaluated using an MTT assay against different breast cancer cell lines including MCF-7, T-47D, SkBr3, and MDA-MB-231. The expression level of Bax and Bcl-2 apoptosis genes was determined by Real-Time PCR. In this study, the optimized niosomal formulation revealed that the synthesized niosomes had a spherical appearance and had an average size of 192.73 ± 5.50 nm so that the percentage of drug loading was 94.71 ± 1.56%. Moreover, this formulation showed a controlled and slowed release of paclitaxel at different pH (7.4, 6.5, and 5.4). The cytotoxicity results demonstrated that cell viability in all concentrations of niosome loaded paclitaxel had profound cytotoxic effects on all studied breast cancer cell lines compared to the free paclitaxel (p < 0.05). In addition, the expression of apoptosis genes was much higher than that of free paclitaxel indicating the susceptibility of cells to apoptosis. CONCLUSIONS: As a result, niosomal formulations containing paclitaxel can be used as a new drug delivery system to increase cytotoxicity and treatment of breast cancer in the upcoming future.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cholesterol , Female , Gene Expression , Humans , Liposomes , MCF-7 Cells , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Particle Size
3.
Gastroenterol Hepatol Bed Bench ; 15(4): 406-414, 2022.
Article in English | MEDLINE | ID: mdl-36762217

ABSTRACT

Aim: This study aimed to perform a head-to-head comparison of changes during NASH progression throughout 6-11 weeks of an experiment to supply a faster nutritional model in mimicking NASH to decrease the duration and cost of in vivo studies. Background: New therapies are urgently needed because of the growing prevalence of non-alcoholic steatohepatitis (NASH) and the lack of an effective treatment approach. Currently, dietary interventions are the most efficient options. Methods: This study compared features of NASH in a murine model using protocol that combined special nutritional regimes based on the combination of 21.1% fat, 41% sucrose, and 1.25% cholesterol with weekly intraperitoneal injections of carbon tetrachloride (CCl4). Male C57BL/6J mice received either special compositions + CCl4 (NASH group) or standard chow diet (healthy control group) for 11 weeks. Liver histopathology based on hematoxylin and eosin (H&E) and Masson's Trichrome (TC) staining and biochemical analyses were used to assess disease progression. Results: In C57BL/6J mice administered a high fat, high cholesterol, high sucrose diet and CCl4 for 8 weeks, steatohepatitis with pronounced hepatocyte ballooning, inflammation, steatosis, and fibrosis was observed. According to the NAFLD activity scoring system, the maximum NAS score was manifested after 8-9 weeks (NAS score: 6.75). Following this protocol also led to a significant increase in AST and ALT, total cholesterol, and total triglyceride serum levels in the NASH group. Conclusion: Following the special nutritional regime based on high fat, cholesterol, and sucrose in combination with CCL4 injections resulted in a NASH model using C57BL/6J mice in a shorter time compared to similar studies. The obtained histopathological NASH features can be advantageous for preclinical drug testing.

4.
Rep Biochem Mol Biol ; 10(1): 69-75, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34277870

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer death in American population. In this manner, novel therapeutic approaches for identification of therapeutic targets for PCa has significant clinical implications. Quercetin is a potent cancer therapeutic agent and dietary antioxidant present in fruit and vegetables. METHODS: To investigate the underlying mechanism by which the PCa was regulated, nanoparticles of quercetin were administrated to cells. For in vitro experiments, human PCa cell line LNCaP were involved. Cell viability assay and quantitative RT-PCR (qRT-PCR) for hedgehog signaling pathway genes were used to determine the key signaling pathway regulated for PCa progression. RESULTS: The cell viability gradually decreased with increased concentration of quercetin nanoparticles. At 48 h, 40 mM concentration of quercetin treatment showed near 50% of viable cells. Quercetin nanoparticles upregulates Su(Fu) mRNA expressions and downregulates gli mRNA expressions in the LNCaP cells. CONCLUSION: The results showed that the hedgehog signaling targeted inhibition may have important implications of PCa therapeutics. Additionally, the outcomes provided new mechanistic basis for further examination of quercetin nanoparticles to discover potential treatment strategies and new targets for PCa inhibition.

5.
Metab Brain Dis ; 32(5): 1537-1542, 2017 10.
Article in English | MEDLINE | ID: mdl-28578515

ABSTRACT

Schizophrenia (SCZ) is the most severe chronic mental disorder characterized by abnormal social behavior and disrupted emotions and thought. Like other complex neuropsychological disease, SCZ is caused by a combination of genetic and environmental factors but with a high concordance rate. So far, different genetic factors are revealed to be associated with increased risk of developing SCZ. One of the best ways to investigate the genetic basis of the complex disease is to discover the genetic underlying mechanisms of the defective clinical aspects of the patients. In this regard, genes involved in the developmental mechanisms of the brain such as long-term potentiation (LTP) process that is the basis of synaptic plasticity, memory and learning are considered as strong candidates for SCZ. The aim of the present study was to evaluate the expression levels of two genes that are involved in the LTP regulation in the developing and adult brain, Matrix metallopeptidase9 (MMP9) and TIMP metallopeptidase inhibitor 1 (TIMP1) genes in a blood assessment of schizophrenic patients in comparison to healthy controls by means of quantitative real time PCR. The results of the study showed a significant difference in MMP9/TIPM1 ratio between SCZ patients and healthy controls (P = 0.01). However, no significant difference was detected in the expression level of individual MMP9 and TIMP1 genes in SCZ patients versus healthy controls either in total numbers of subject or in sex based subgroups. Considering the relatively small sample size of the current study, there is a need to replicate this study with further investigations about the mechanism of association of these genes and their functions in the pathogenesis of the SCZ.


Subject(s)
Matrix Metalloproteinase 9/blood , Schizophrenia/genetics , Tissue Inhibitor of Metalloproteinase-1/blood , Adult , Aged , DNA, Complementary/genetics , Female , Gene Expression/genetics , Humans , Iran , Long-Term Potentiation , Male , Middle Aged , Polymerase Chain Reaction , Schizophrenia/blood , Schizophrenic Psychology
6.
Environ Monit Assess ; 187(11): 693, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26483084

ABSTRACT

The dissipation of malathion in 5% aqueous extracts of some fruits and vegetables including bell pepper, tomato, cucumber, cantaloupe, carrot, and also buffer (control) was investigated at 37 °C for 4 h. The dissipation trend of malathion in the fruit/vegetable samples and buffer followed first-order double-exponential decay (FODED) and simple first-order kinetic (SFOK) models, respectively. The initial dissipation rate of malathion in tomato (DT10=0.05 h), bell pepper (DT10=0.06 h), and carrot (DT10=0.07 h) was faster compared to the other samples. The slowest rate of pesticide decline belonged to cantaloupe (DT50=1.92 h) with a significant difference from the other samples (p≤0.01), whereas tomato (DT50=0.43 h) and carrot (DT50=0.53 h) showed the fastest dissipation rate. DT90 values derived from the models revealed no significant difference between the samples except for cantaloupe which had the slowest rate of dissipation (DT90=8.27 h) with a significant difference compared to others (p≤0.01). A direct correlation was observed between protein content of the samples and the rate of malathion decline which indicates the role of plant enzymes in degrading malathion residues.


Subject(s)
Fruit/chemistry , Malathion/chemistry , Pesticides/chemistry , Vegetables/chemistry , Cucumis sativus , Environmental Monitoring , Kinetics , Malathion/analysis , Pesticides/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...