Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 253: 297-303, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29413995

ABSTRACT

This study evaluated the bioenergy potential of Wolffia arrhiza via pyrolysis. The biomass was collected from the pond receiving city wastewater. Oven dried powdered biomass was exposed to thermal degradation at three heating rates (10, 30 and 50°â€¯C min-1) using Thermogravimetry-Differential Scanning Calorimetry analyzer in an inert environment. Data obtained were subjected to the isoconversional models of Kissenger-Akahira-Sunose (KSA) and Flynn-Wall-Ozawa (FWO) to elucidate the reaction chemistry. Kinetic parameters including, Ea (136-172 kJmol-1) and Gibb's free energy (171 kJmol-1) showed the remarkable bioenergy potential of the biomass. The average enthalpies indicated that the product formation is favored during pyrolysis. Advanced coupled TG-FTIR-MS analyses showed the evolved gases to contain the compounds containing CO functional groups (aldehydes, ketones), aromatic and aliphatic hydrocarbons as major pyrolytic products. This low-cost abundant biomass may be used to produce energy and chemicals in a cost-efficient and environmentally friendly way.


Subject(s)
Gases , Spectroscopy, Fourier Transform Infrared , Biomass , Kinetics , Thermodynamics , Thermogravimetry
2.
Protein Pept Lett ; 25(2): 195-201, 2018.
Article in English | MEDLINE | ID: mdl-29359654

ABSTRACT

BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production. OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production. METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS. RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production. CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.


Subject(s)
Biofuels , Fatty Acids/chemistry , Soil Microbiology , Yarrowia , Acids/chemistry , Biomass , Catalysis , Esterification , Esters/chemistry , Fatty Acids/metabolism , Lipid Metabolism , Nitrogen/chemistry , Triglycerides/chemistry
3.
Protein Pept Lett ; 25(2): 120-128, 2018.
Article in English | MEDLINE | ID: mdl-29359657

ABSTRACT

BACKGROUND: Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels. Therefore, membrane transporter engineering is gaining increasing attentions from all over the world. OBJECTIVE: The main objective of this review is to explore the ways to increase the microbial production of biofuels by counteracting the cellular toxicity and facilitating their easier recovery from media. CONCLUSION: Microbial synthesis of industrially viable compounds such as biofuels has been increased due to genomic revolution. Moreover, advancements in protein engineering, gene regulation, pathway portability, metabolic engineering and synthetic biology led the focus towards the development of robust and cost-effective systems for biofuel production. The most convenient way to combat cellular toxicity and to secrete biofuels is the use of membrane transport system. The use of membrane transporters is currently a serious oversight as do not involve chemical changes and contribute greatly to efflux biofuels in extracellular milieu. However, overexpression of transport systems can also be detrimental to cell, so, in future, structure-based engineering of transporters can be employed to evaluate optimum expression range, to increase biofuel specificity and transport rate through structural studies of biofuel molecules.


Subject(s)
Alcohols/chemistry , Bacteria/genetics , Biofuels , Industrial Microbiology/methods , Metabolic Engineering/methods , Kinetics , Protein Engineering/methods , Signal Transduction , Thermodynamics
4.
Bioresour Technol ; 245(Pt A): 491-501, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28898849

ABSTRACT

This work was focused on understanding the pyrolysis of Typha latifolia. Kinetics, thermodynamics parameters and pyrolysis reaction mechanism were studied using thermogravimetric data. Based on activation energies and conversion points, two regions of pyrolysis were established. Region-I occurred between the conversion rate 0.1-0.4 with peak temperatures 538K, 555K, 556K at the heating rates of 10Kmin-1, 30Kmin-1, and 50Kmin-1, respectively. Similarly, the Region-II occurred between 0.4 and 0.8 with peak temperatures of 606K, 621K, 623K at same heating rates. The best model was diffusion mechanism in Region-I. In Region-II, the reaction order was shown to be 2nd and 3rd. The values of activation energy calculated using FWO and KAS methods (134-204kJmol-1) remained same in both regions reflecting that the best reaction mechanism was predicted. Kinetics and thermodynamic parameters including E, ΔH, ΔS, ΔG shown that T. latifolia biomass is a remarkable feedstock for bioenergy.


Subject(s)
Biofuels , Typhaceae , Biomass , Kinetics , Thermodynamics , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...