Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 27(2): 710-721, 2023 02.
Article in English | MEDLINE | ID: mdl-35763469

ABSTRACT

The Internet of Medical Things (IoMT) has risen to prominence as a possible backbone in the health sector, with the ability to improve quality of life by broadening user experience while enabling crucial solutions such as near real-time remote diagnostics. However, privacy and security problems remain largely unresolved in the safety area. Various rule-based methods have been considered to recognize aberrant behaviors in IoMT and have demonstrated high accuracy of misbehavior detection appropriate for lightweight IoT devices. However, most of these solutions have privacy concerns, especially when giving context during misbehavior analysis. Moreover, falsified or modified context generates a high percentage of false positives and sometimes causes a by-pass in misbehavior detection. Relying on the recent powerful consolidation of blockchain and federated learning (FL), we propose an efficient privacy-preserving framework for secure misbehavior detection in lightweight IoMT devices, particularly in the artificial pancreas system (APS). The proposed approach employs privacy-preserving bidirectional long-short term memory (BiLSTM) and augments the security through integrating blockchain technology based on Ethereum smart contract environment. The effectiveness of the proposed model is bench-marked empirically in terms of sustainable privacy preservation, commensurate incentive scheme with an untraceability feature, exhaustiveness, and the compact results of a variant neural network approach. As a result, the proposed model has a 99.93% recall rate, showing that it can detect virtually all possible malicious events in the targeted use case. Furthermore, given an initial ether value of 100, the solution's average gas consumption and Ether spent are 84,456.5 and 0.03157625, respectively.


Subject(s)
Blockchain , Privacy , Humans , Quality of Life , Internet of Things
2.
Sensors (Basel) ; 21(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807378

ABSTRACT

The emergence of the Internet of Vehicles (IoV) aims to facilitate the next generation of intelligent transportation system (ITS) applications by combining smart vehicles and the internet to improve traffic safety and efficiency. On the other hand, mobile edge computing (MEC) technology provides enormous storage resources with powerful computing on the edge networks. Hence, the idea of IoV edge computing (IoVEC) networks has grown to be an assuring paradigm with various opportunities to advance massive data storage, data sharing, and computing processing close to vehicles. However, the participant's vehicle may be unwilling to share their data since the data-sharing system still relies on a centralized server approach with the potential risk of data leakage and privacy security. In addition, vehicles have difficulty evaluating the credibility of the messages they received because of untrusted environments. To address these challenges, we propose consortium blockchain and smart contracts to accomplish a decentralized trusted data sharing management system in IoVEC. This system allows vehicles to validate the credibility of messages from their neighboring by generating a reputation rating. Moreover, the incentive mechanism is utilized to trigger the vehicles to store and share their data honestly; thus, they will obtain certain rewards from the system. Simulation results substantially display an efficient network performance along with forming an appropriate incentive model to reach a decentralized trusted data sharing management of IoVEC networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...