Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(5): 7902-7933, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168854

ABSTRACT

This study aims to determine the eco-friendliness of microalgae-based renewable energy production in several scenarios based on life cycle assessment (LCA). The LCA provides critical data for sustainable decision-making and energy requirement analysis, including net energy ratio (NER) and cumulative energy demand (CED). The Centrum voor Milieuwetenschappen Leiden (CML) IA-Baseline was used on environmental impact assessment method by SimaPro v9.3.0.3® software and energy analysis of biofuel production using native polyculture microalgae biomass in municipal wastewater treatment plants (WWTP) Bojongsoang, Bandung, Indonesia. The study was analyzed under three scenarios: (1) the current scenario; (2) the algae scenario without waste heat and carbon dioxide (CO2); and (3) the algae scenario with waste heat and carbon dioxide (CO2). Waste heat and CO2 were obtained from an industrial zone near the WWTP. The results disclosed that the microalgae scenario with waste heat and CO2 utilization is the most promising scenario with the lowest environmental impact (- 0.139 kg CO2eq/MJ), positive energy balance of 1.23 MJ/m3 wastewater (NER > 1), and lower CED value across various impact categories. It indicates that utilizing the waste heat and CO2 has a positive impact on energy efficiency. Based on the environmental impact, NER and CED values, this study suggests that the microalgae scenario with waste heat and CO2 is more feasible and sustainable to adopt and could be implemented at the Bojongsoang WWTP.


Subject(s)
Microalgae , Water Purification , Animals , Carbon Dioxide , Indonesia , Biofuels , Biomass , Life Cycle Stages
2.
Heliyon ; 9(11): e22010, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034652

ABSTRACT

To address the high production cost associated with bacterial cellulose (BC) production using the Hestrin-Schramm (HS) medium, alternative agricultural wastes have been investigated as potential low-cost resources. This study aims to utilize pineapple core from pineapple canning industry waste as a carbon source to enhance the bacterial growth of Komagataeibacter xylinus and to characterize the physical and mechanical properties of the resulting BC. To assess growth performance, commercial sugar at concentrations of 0, 2.5, and 5.0 % (w/v) was incorporated into the medium. Fermentation was conducted under static conditions at room temperature for 5, 10, and 15 days. The structural and physical properties of BC were characterized using SEM, FTIR, XRD, and DSC. With the exception of crystallinity, BC produced from the pineapple core medium exhibited comparable characteristics to BC produced in the HS medium. These findings highlight the potential of utilizing pineapple core, a byproduct of the canning industry, as an economically viable nutrient source for BC production.

SELECTION OF CITATIONS
SEARCH DETAIL
...