Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33737365

ABSTRACT

Burkholderia sp. strain USMB20 is a plant growth-promoting rhizobacterium that was isolated from nodules of the leguminous cover crop Mucuna bracteata. The draft genome sequence of Burkholderia sp. strain USMB20 has an assembly size of 7.7 Mbp in 26 contigs with a GC content of 66.88%.

2.
Stand Genomic Sci ; 7(3): 483-96, 2013.
Article in English | MEDLINE | ID: mdl-24019994

ABSTRACT

Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different.

3.
BMC Genomics ; 14: 431, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23809012

ABSTRACT

BACKGROUND: Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures. RESULTS: The taxonomic clustering of Novosphingobium strains is generally influenced by their isolation source. AAI and genomic signature provide strong support the classification of Novosphingobium sp. PP1Y as Novosphingobium pentaromaticivorans PP1Y. The identification and subsequent functional annotation of the unique core genome in the marine Novosphingobium bacteria show that ectoine synthesis may be the main contributing factor in salt water adaptation. Genes coding for the synthesis and receptor of the cell-cell signaling molecules, of the N-acyl-homoserine lactones (AHL) class are identified. Notably, a solo luxR homolog was found in strain PP1Y that may have been recently acquired via horizontal gene transfer as evident by the presence of multiple mobile elements upstream of the gene. Additionally, phylogenetic tree analysis and sequence comparison with functionally validated aromatic ring hydroxylating dioxygenases (ARDO) revealed the presence of several ARDOs (oxygenase) in Novosphingobium bacteria with the majority of them belonging to the Groups II and III of the enzyme. CONCLUSIONS: The combination of prior knowledge on the distinctive phenotypes of Novosphingobium strains and meta-analysis of their whole genomes enables the identification of several genes that are relevant in industrial applications and bioremediation. The results from such targeted but comprehensive comparative genomics analysis have the potential to contribute to the understanding of adaptation, cell-cell communication and bioremediation properties of bacteria belonging to the genus Novosphingobium.


Subject(s)
Adaptation, Physiological/genetics , Alphaproteobacteria/cytology , Alphaproteobacteria/physiology , Genomics , Oceans and Seas , Signal Transduction/genetics , Adaptation, Physiological/drug effects , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Conserved Sequence , Dioxygenases/genetics , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Molecular Sequence Data , Phenotype , Phylogeny , Quorum Sensing/genetics , Salts/pharmacology , Sequence Homology, Nucleic Acid , Species Specificity
4.
BMC Genomics ; 14: 75, 2013 Feb 02.
Article in English | MEDLINE | ID: mdl-23375136

ABSTRACT

BACKGROUND: Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. RESULTS: Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. CONCLUSIONS: The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.


Subject(s)
Genomics , Hevea/genetics , Sequence Analysis , Allergens/genetics , Disease Resistance/genetics , Evolution, Molecular , F-Box Proteins/genetics , Genome, Plant/genetics , Haploidy , Hevea/immunology , Hevea/metabolism , Latex/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Growth Regulators/genetics , Rubber/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Wood/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...