Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 29(5): 622-9, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23314326

ABSTRACT

MOTIVATION: Many techniques have been developed to compute the response network of a cell. A recent trend in this area is to compute response networks of small size, with the rationale that only part of a pathway is often changed by disease and that interpreting small subnetworks is easier than interpreting larger ones. However, these methods may not uncover the spectrum of pathways perturbed in a particular experiment or disease. RESULTS: To avoid these difficulties, we propose to use algorithms that reconcile case-control DNA microarray data with a molecular interaction network by modifying per-gene differential expression P-values such that two genes connected by an interaction show similar changes in their gene expression values. We provide a novel evaluation of four methods from this class of algorithms. We enumerate three desirable properties that this class of algorithms should address. These properties seek to maintain that the returned gene rankings are specific to the condition being studied. Moreover, to ease interpretation, highly ranked genes should participate in coherent network structures and should be functionally enriched with relevant biological pathways. We comprehensively evaluate the extent to which each algorithm addresses these properties on a compendium of gene expression data for 54 diverse human diseases. We show that the reconciled gene rankings can identify novel disease-related functions that are missed by analyzing expression data alone. AVAILABILITY: C++ software implementing our algorithms is available in the NetworkReconciliation package as part of the Biorithm software suite under the GNU General Public License: http://bioinformatics.cs.vt.edu/∼murali/software/biorithm-docs.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Protein Interaction Mapping , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Biological Transport , Brain/metabolism , Gene Regulatory Networks , Glucose/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Insulin/physiology , Oligonucleotide Array Sequence Analysis , Software
2.
Article in English | MEDLINE | ID: mdl-24384702

ABSTRACT

Analysis of molecular interaction networks is pervasive in systems biology. This research relies almost entirely on graphs for modeling interactions. However, edges in graphs cannot represent multiway interactions among molecules, which occur very often within cells. Hypergraphs may be better representations for networks having such interactions, since hyperedges can naturally represent relationships among multiple molecules. Here, we propose using hypergraphs to capture the uncertainty inherent in reverse engineering gene-gene networks. Some subsets of nodes may induce highly varying subgraphs across an ensemble of networks inferred by a reverse engineering algorithm. We provide a novel formulation of hyperedges to capture this uncertainty in network topology. We propose a clustering-based approach to discover hyperedges. We show that our approach can recover hyperedges planted in synthetic data sets with high precision and recall, even for moderate amount of noise. We apply our techniques to a data set of pathways inferred from genetic interaction data in S. cerevisiae related to the unfolded protein response. Our approach discovers several hyperedges that capture the uncertain connectivity of genes in relevant protein complexes, suggesting that further experiments may be required to precisely discern their interaction patterns. We also show that these complexes are not discovered by an algorithm that computes frequent and dense subgraphs.


Subject(s)
Algorithms , Models, Biological , Protein Interaction Mapping/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...