Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Sci Rep ; 14(1): 15436, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965280

ABSTRACT

Alzheimer disease (AD) is the cause of dementia and accounts for 60-80% cases. Tumor Necrosis Factor-alpha (TNF-α) is a multifunctional cytokine that provides resistance to infections, inflammation, and cancer. It developed as a prospective therapeutic target against multiple autoimmune and inflammatory disorders. Cholinergic insufficiency is linked to Alzheimer's disease, and several cholinesterase inhibitors have been created to treat it, including naturally produced inhibitors, synthetic analogs, and hybrids. In the current study, we tried to prepared compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's using manganese tetroxide nanoparticles (Mn3O4-NPs) as a catalyst to generate compounds with excellent reaction conditions. The Biginelli synthesis yields 4-(4-cyanophenyl)-6-oxo-2-thioxohexahydropyrimidine-5-carbonitrile when the 4-cyanobenzaldehyde, ethyl cyanoacetate, and thiourea were coupled with Mn3O4-NPs to produce compound 1. This multi-component method is non-toxic, safe, and environmentally friendly. The new approach reduced the amount of chemicals used and preserved time. Compound 1 underwent reactions with methyl iodide, acrylonitrile, chloroacetone, ethyl chloroacetate, and chloroacetic acid/benzaldehyde, each of the synthetized compounds was docked with TNF-α converting enzyme. These compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's disease. The majority of the produced compounds demonstrated pharmacokinetic features, making them potentially attractive therapeutic candidates for Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease , Manganese Compounds , Molecular Docking Simulation , Nanoparticles , Oxides , Pyrimidines , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Animals , Nanoparticles/chemistry , Oxides/chemistry , Oxides/pharmacology , Humans , Rats , Male
2.
Heliyon ; 10(10): e31173, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799749

ABSTRACT

Kaptai Lake, the largest artificial reservoir in Southeast Asia, is home to a diverse fish fauna that supports thousands of livelihoods and is distinguished by multi-species and multi-gear fisheries. In Kaptai Lake, the gear-based catch composition, catch rate and distribution pattern are little known. From August 2020 to April 2021, a nine-month study was conducted in five upazilas using direct catch assessment surveys and fishing effort surveys from four fishing gears, namely seine nets, gill nets, lift nets, and push nets. A total of 49 morpho-species from 22 families were found, with three species from the Clupeidae accounting for 93.63 % of the catch in all gear combined. The total catch composition and CPUE were higher in seine nets (75.07 %, 13.86 ± 1.8 kg/gear/trip respectively) and lower in lift nets (4.97 %, 1.01 ± 0.21 kg/gear/trip) and showed significant differences among gears, except sampling sites whereas CPUE was higher in Naniarchar for seine nets (17.29 ± 8.89 kg/gear/trip) and lower in Langadu for lift nets (0.62 ± 0.25 kg/gear/trip). Seine nets captured more species, and the number of species increased significantly as CPUE increased. Our study assessed four gears that targeted different fish species with little overlap in leading species; seine nets and gill nets primarily targeted Clupeidae (96.53 % and 41.69 %, respectively), whereas lift nets and push nets primarily targeted Cyprinidae and Palaemonidae (38.93 % and 99.37 % respectively). The observed abundance and variety of fish species captured in gill nets suggest a significant overlap in the selectivity of this fishing method with that of lift nets. Due to the varying contributions of sites and gears, the nMDS ordination pattern reveals a weak spatial variation in catch composition. According to the SIMPER results, Bagridae, Gobiidae, and Ambassidae were the most significant contributors to site grouping patterns across all gears. Furthermore, the findings indicate that the catch composition does not follow the typical pattern of spatial variation. By implementing measures to eliminate or decrease the usage of small mesh nets, there is expected to be a corresponding decrease in the capture of small fish. Additionally, this action will help mitigate the issue of overlapping selectivity among the current fishing gears. Our findings provide baseline data on the potential efficacy of gear limitation and suggest a gear-based management strategy.

3.
Micromachines (Basel) ; 15(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38675314

ABSTRACT

Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light-matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light-matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices.

4.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242065

ABSTRACT

The implementation of a texturing pattern on the surface of a solar cell is well known for reducing reflection, thus increasing the absorption of sunlight by the solar cell. Nanowires (NWs) that are large in their height have been widely used for this purpose. Through rigorous numerical simulations, this work explores the benefits of short but index-matched NWs and how these designs are also affected by surface recombination. Additionally, this work further optimized power conversion efficiency (PCE) by placing two or three NWs of different heights and diameters on top of each other to mimic the performance of two-NW and three-NW ARC designs with PCEs of 16.8% and 17.55%, respectively, when a radial pn junction is considered. These are the highest reported so far for such a thin silicon solar cell. Furthermore, we also show how these designs were impacted by surface recombination velocity and compare these findings to simple NWs of different heights and diameters.

5.
Sensors (Basel) ; 23(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36772328

ABSTRACT

Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.

6.
Mymensingh Med J ; 32(1): 265-267, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36594332

ABSTRACT

Paroxysmal nocturnal haemoglobinuria (PNH) is a rare disorder of hematopoietic stem cells. The occurrence of PNH in a patient with systemic lupus erythematosus (SLE) is even rarer. One such presentation was seen in a 19 years old woman who presented with fever, multiple joint pain, photosensitivity, oral ulcer, hair loss and was diagnosed as a case of SLE and was admitted in Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh on 7th February 2019. Subsequently she developed progressive anaemia and passing of dark colored urine. Flow cytometry analysis showed PNH clone within red cells. We report this case so that clinicians are aware about this association between PNH and SLE. Informed written consent was obtained from the patient for the publication of this case report, the copy of which is available with the authors.


Subject(s)
Hemoglobinuria, Paroxysmal , Lupus Erythematosus, Systemic , Female , Humans , Young Adult , Adult , Hemoglobinuria, Paroxysmal/complications , Hemoglobinuria, Paroxysmal/diagnosis , Bangladesh , Erythrocytes , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Flow Cytometry
7.
Sci Rep ; 13(1): 1129, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670171

ABSTRACT

Nanophotonics exploits the best of photonics and nanotechnology which has transformed optics in recent years by allowing subwavelength structures to enhance light-matter interactions. Despite these breakthroughs, design, fabrication, and characterization of such exotic devices have remained through iterative processes which are often computationally costly, memory-intensive, and time-consuming. In contrast, deep learning approaches have recently shown excellent performance as practical computational tools, providing an alternate avenue for speeding up such nanophotonics simulations. This study presents a DNN framework for transmission, reflection, and absorption spectra predictions by grasping the hidden correlation between the independent nanostructure properties and their corresponding optical responses. The proposed DNN framework is shown to require a sufficient amount of training data to achieve an accurate approximation of the optical performance derived from computational models. The fully trained framework can outperform a traditional EM solution using on the COMSOL Multiphysics approach in terms of computational cost by three orders of magnitude. Furthermore, employing deep learning methodologies, the proposed DNN framework makes an effort to optimise design elements that influence the geometrical dimensions of the nanostructure, offering insight into the universal transmission, reflection, and absorption spectra predictions at the nanoscale. This paradigm improves the viability of complicated nanostructure design and analysis, and it has a lot of potential applications involving exotic light-matter interactions between nanostructures and electromagnetic fields. In terms of computational times, the designed algorithm is more than 700 times faster as compared to conventional FEM method (when manual meshing is used). Hence, this approach paves the way for fast yet universal methods for the characterization and analysis of the optical response of nanophotonic systems.


Subject(s)
Deep Learning , Nanostructures , Nanostructures/chemistry , Nanotechnology/methods , Optics and Photonics , Electromagnetic Fields
8.
Opt Express ; 30(8): 12982-12994, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472922

ABSTRACT

Optical metasurface is a combination of manufactured periodic patterns of many artificial nanostructured unit cells, which can provide unique and attractive optical and electrical properties. Additionally, the function of the metasurface can be altered by adjusting the metasurface's size and configuration to satisfy a particular required property. However, once it is fabricated, such specific property is fixed and cannot be changed. Here, phase change material (PCM) can play an important role due to its two distinct states during the phase transition, referred to as amorphous and crystalline states, which exhibit significantly different refractive indices, particularly in the infrared wavelength. Therefore, a combination of metasurface with a phase change material may be attractive for achieving agile and tunable functions. In this paper, we numerically investigate an array of silicon cylinders with a thin PCM layer at their centers. The GST and GSST are the most well-known PCMs and were chosen for this study due to their non-volatile properties. This structure produces two resonant modes, magnetic dipole and electric dipole, at two different resonating wavelengths. We have numerically simulated the effect of cylinder's height and diameter on the reflecting profile, including the effect of thickness of the phase change material. Additionally, it is shown here that a superior performance can be achieved towards reduced insertion loss, enhanced extinction ratio, and increased figure of merit when a GST layer is replaced by a GSST layer.

9.
Biosensors (Basel) ; 12(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35049670

ABSTRACT

The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.


Subject(s)
Biosensing Techniques , Nanostructures , Nanotubes , Nanotechnology , Optical Fibers
10.
Nanomaterials (Basel) ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35010120

ABSTRACT

The Artificial Neural Network (ANN) has become an attractive approach in Machine Learning (ML) to analyze a complex data-driven problem. Due to its time efficient findings, it has became popular in many scientific fields such as physics, optics, and material science. This paper presents a new approach to design and optimize the electromagnetic plasmonic nanostructures using a computationally efficient method based on the ANN. In this work, the nanostructures have been simulated by using a Finite Element Method (FEM), then Artificial Intelligence (AI) is used for making predictions of associated sensitivity (S), Full Width Half Maximum (FWHM), Figure of Merit (FOM), and Plasmonic Wavelength (PW) for different paired nanostructures. At first, the computational model is developed by using a Finite Element Method (FEM) to prepare the dataset. The input parameters were considered as the Major axis, a, the Minor axis, b, and the separation gap, g, which have been used to calculate the corresponding sensitivity (nm/RIU), FWHM (nm), FOM, and plasmonic wavelength (nm) to prepare the dataset. Secondly, the neural network has been designed where the number of hidden layers and neurons were optimized as part of a comprehensive analysis to improve the efficiency of ML model. After successfully optimizing the neural network, this model is used to make predictions for specific inputs and its corresponding outputs. This article also compares the error between the predicted and simulated results. This approach outperforms the direct numerical simulation methods for predicting output for various input device parameters.

11.
Sci Rep ; 12(1): 48, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996926

ABSTRACT

The electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron-hole (e-h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core-shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by [Formula: see text] 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA[Formula: see text] for the axial junction proposed. However, the core-shell junction shows figures of 19% and 34.9 mA[Formula: see text]. The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of [Formula: see text] cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core-shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core-shell junction was marginally affected by the NW surface recombination, compared to the axial junction.

12.
Sensors (Basel) ; 21(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577373

ABSTRACT

Gold nanoantennas have been used in a variety of biomedical applications due to their attractive electronic and optical properties, which are shape- and size-dependent. Here, a periodic paired gold nanostructure exploiting surface plasmon resonance is proposed, which shows promising results for Refractive Index (RI) detection due to its high electric field confinement and diffraction limit. Here, single and paired gold nanostructured sensors were designed for real-time RI detection. The Full-Width at Half-Maximum (FWHM) and Figure-Of-Merit (FOM) were also calculated, which relate the sensitivity to the sharpness of the peak. The effect of different possible structural shapes and dimensions were studied to optimise the sensitivity response of nanosensing structures and identify an optimised elliptical nanoantenna with the major axis a, minor axis b, gap between the pair g, and heights h being 100 nm, 10 nm, 10 nm, and 40 nm, respectively. In this work, we investigated the bulk sensitivity, which is the spectral shift per refractive index unit due to the change in the surrounding material, and this value was calculated as 526-530 nm/RIU, while the FWHM was calculated around 110 nm with a FOM of 8.1. On the other hand, the surface sensing was related to the spectral shift due to the refractive index variation of the surface layer near the paired nanoantenna surface, and this value for the same antenna pair was calculated as 250 nm/RIU for a surface layer thickness of 4.5 nm.


Subject(s)
Biosensing Techniques , Nanostructures , Gold , Refractometry , Surface Plasmon Resonance
13.
Mar Pollut Bull ; 172: 112863, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34425365

ABSTRACT

Petroleum hydrocarbon pollution in marine waters has been an extremely significant environmental and health issue worldwide. This study aims at constructing an efficient indigenous bacterial consortium to biodegrade Tapis Light Crude Petroleum Oil (TLCO). The local agro-industrial wastewater of palm oil mill effluent final discharge (POME FD) was used as biostimulant to enhance the biodegradation efficiency. In this study, three TLCO degrading bacteria were isolated from seawater samples collected. Molecular identification using 16S rRNA genes sequencing was done and results show that these isolated strains belong to: Bacillus tropicus, Bacillus licheniformis and Bacillus subtilis. Bacterial consortium tested using four different concentrations of POME FD (0.1, 0.25, 0.5, and 1%) as biostimulant and TLCO (0.5 and 1.0%) degradation capability was investigated. The residual TLCO in culture medium after 40 days was analysed. The results confirmed that POME FD dosage of 0.25% is optimum for the bacterial consortium and can degrade 99.85% of TLCO at 0.5%. However, TLCO degradation with POME FD dosage (0.25%) in TLCO (1.0%) was found optimum, with biodegradation reaching up to 95.23% in 40 days. This study is a beginning for the future development of a consortium of petroleum hydrocarbon degrading bacteria to mitigate oil spills in the Malaysian shoreline.


Subject(s)
Bacillus , Petroleum Pollution , Petroleum , Biodegradation, Environmental , Hydrocarbons , Palm Oil , Petroleum Pollution/analysis , RNA, Ribosomal, 16S
14.
Viral Immunol ; 34(9): 607-621, 2021 11.
Article in English | MEDLINE | ID: mdl-34342515

ABSTRACT

Toll-like receptors (TLRs) represent the immune link between the innate and the adaptive immune signals against various pathogens. This study aimed to evaluate the TLRs3 and 7 as immune-markers in differentiating between hepatitis C virus (HCV)-infected and -uninfected patients. Also, the use of the TLR3 and TLR7 as immune markers was compared with the prevalent bio and immune markers for autoimmune diseases in HCV-infected or -uninfected patients. The levels of GPT, GOT, B cell activated factors, tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-10 were measured in plasma, while the levels of TLR3 and TLR7 were quantified in lysates of peripheral blood mononuclear cells from healthy donors, HCV-infected patients, nonalcoholic fatty liver (NAFL) patients without autoimmune diseases and with autoimmune diseases (HCV-infected patients with autoimmune diseases [HCV+auto], nonalcoholic fatty liver patients with autoimmune diseases [NAFL+auto]), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) patients. The relative expression of TLR3, TLR7, TNF, and IL-10 in cell lysates was assessed against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by quantitative real time-polymerase chain reaction (qRT-PCR). Results showed that TLRs 3 and 7 levels were significantly higher in SLE, RA, HCV, HCV+auto, and the NAFL patients compared to the normal control. The cell lysates from SLE patients expressed TLR3 at relatively significantly higher mRNA levels compared to normal subjects or other patient groups. The NAFL+auto patients expressed TLR7 at relatively significantly high mRNA levels compared to normal subjects or other patients. The RA patients expressed TLR7 at relatively significantly higher mRNA levels when compared to HCV, HCV+auto, and NAFL+auto patients. Conclusions: At the protein level, TLR7 can differentiate between HCV and NAFL patients. In addition, both TLRs3 and 7 can serve as potent markers in differentiating between NAFL and NAFL+auto.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 3 , Biomarkers/metabolism , Egypt , Humans , Leukocytes, Mononuclear/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/genetics
15.
Nanotechnology ; 32(47)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34388742

ABSTRACT

Different Ti substrates, such as particles (as-received and ball milled), plate and TEM grid were oxidized for the growth of one dimensional (1D) TiO2nanostructures. The Ti substrates were oxidized for 4 h at temperatures of 700 °C-750 °C in humid and dry Ar containing 5 ppm of O2. The effects of residual stress on the growth of 1D TiO2nanostructures were investigated. The residual stress inside the Ti particles was measured by XRD-sin2ψtechnique. The oxidized Ti substrates were characterized using field emission scanning electron microscope equipped with energy dispersive x-ray spectroscope, transmission electron microscope, x-ray diffractometer and x-ray photoelectron spectroscope. Results revealed that humid environment enhances the growth of 1D TiO2nanostructures. Four different types of 1D morphologies obtained during humid oxidation, e.g. stacked, ribbon, plateau and lamp-post shaped nanostructures. The presence of residual stress significantly enhances the density and coverage of 1D nanostructures. The as-grown TiO2nanostructures possess tetragonal rutile structure having length up to 10µm along the 〈1 0 1〉 directions. During initial stage of oxidation, a TiO2layer is formed on Ti substrate. Lower valence oxides (Ti3O5, Ti2O3and TiO) then form underneath the TiO2layer and induce stress at the interface of oxide layers. The induced stress plays significant role on the growth of 1D TiO2nanostructures. The induced stress is relaxed by creating new surfaces in the form of 1D TiO2nanostructures. A diffusion based model is proposed to explain the mechanism of 1D TiO2growth during humid oxidation of Ti. The 1D TiO2nanostructures and TiO2layer is formed by the interstitial diffusion of Ti4+ions to the surface and reacts with the surface adsorbed hydroxide ions (OH-). Lower valence oxides are formed at the metal-oxide interface by the reaction between diffused oxygen ions and Ti ions.

16.
Opt Express ; 29(3): 3503-3514, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770947

ABSTRACT

In the past decades, silicon photonic integrated circuits (PICs) have been considered a promising approach to solve the bandwidth bottleneck in optical communications and interconnections. Despite the rapid advances, large-scale PICs still face a series of technical challenges, such as large footprint, high power consumption, and lack of optical memory, resulting from the active tuning methods used to control the optical waves. These challenges can be partially addressed by combining chalcogenide phase change materials (PCMs) such as Ge2Sb2Te-5 (GST) with silicon photonics, especially applicable in reconfigurable optical circuit applications due to the nonvolatile nature of the GST. We systematically investigate the phase change process induced by optical and electrical pulses in GST-loaded silicon waveguide and multimode interferometer. Using optical pulse excitation to amorphize GST has a clear advantage in terms of operation speed and energy efficiency, while electrical pulse excitation is more suitable for large-scale integration because it does not require complex optical routing. This study helps us better understand the phase change process and push forward the further development of the Si-GST hybrid photonic integration platform, bringing in new potential applications.

17.
Oper Dent ; 46(6): 641-649, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-35507903

ABSTRACT

This study compared the ability of a calcium silicate-, sodium phosphate-, and fluoride-based (CSSPF) toothpaste (TP) in promoting dentinal tubule occlusion and reducing dentin permeability with that of other commercially available antisensitivity TPs. Seventy-eight dentin discs (1.0±0.1 mm thick) were prepared from the midcoronal area and were treated with 37% phosphoric acid for 2 minutes; then they were randomly divided into six groups according to treatments: No treatment [positive control (PC)], entirely covered with nail varnish [negative control (NC)], hydroxyapatite (HAP)-containing TP [Desensin Repair (DES)], NovaMin-based [Sensodyne Repair & Protect (SEN)], CSSPF-based TP [Regenerate Advanced (REG)], sodium monofluorophosphate, potassium citrate, zinc citrate TP [Signal Sensitive Expert (SIG)]. Dentin permeability was tested by the dye percolation method (DP%). Scanning electron microscope (SEM) micromorphological and energy dispersive X-ray elemental analysis (EDX) of the dentin surfaces were done following each treatment. Results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey post hoc test at a 95% confidence level (α=0.05). All the tested groups showed higher DP% than NC and lower percolation than the PC (p<0.05). REG and SIG were statistically comparable, and showed significantly lower DP% (p<0.05) than SEN and DES. None of the TPs tested was able to obliterate the lumen of the dentinal tubules (DT) completely. REG exhibited the highest weight percentage of calcium deposition, followed by SEN. Compared to the tested desensitizing TPs, CSSPF-based TPs demonstrated equal or less dentin permeability and better DT occlusion.


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Calcium Compounds , Dentin , Dentin Desensitizing Agents/pharmacology , Dentin Desensitizing Agents/therapeutic use , Dentin Permeability , Dentin Sensitivity/drug therapy , Fluorides/pharmacology , Fluorides/therapeutic use , Humans , Microscopy, Electron, Scanning , Permeability , Phosphates , Silicates , Sodium Fluoride , Toothpastes/pharmacology
18.
Environ Res ; 196: 110280, 2021 05.
Article in English | MEDLINE | ID: mdl-33035558

ABSTRACT

BACKGROUND: Some epidemiological studies show associations between disinfection byproducts (DBPs) and adverse developmental outcomes. OBJECTIVES: We undertook a meta-analysis of epidemiological studies on maternal exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) and risk of small for gestational age (SGA) birth. METHODS: We identified forty-five publications including two reports and five theses via a 2020 literature search. Nineteen study populations from 16 publications met the inclusion criteria and were systematically evaluated. Effect measures were pooled using random effects meta-analytic methods along with cumulative, sub-group and meta-regression analyses to examine between-study heterogeneity and variation in risk across different DBP measures. RESULTS: We detected a small increased risk for SGA with exposure to the sum of four (i.e., THM4) THM4 (odds ratio (OR) = 1.07; 95%CI: 1.03, 1.11), chloroform (OR = 1.05; 95%CI: 1.01, 1.08), bromodichloromethane (OR = 1.08; 95%CI: 1.05, 1.11) and the sum of the brominated THM4 (OR = 1.05; 95%CI: 1.02, 1.09). Larger ORs were detected for the sum of five haloacetic acids (i.e., HAA5) (OR = 1.12; 95%CI: 1.01, 1.25), dichloroacetic acid (OR = 1.25; 95%CI: 1.01, 1.41) and trichloroacetic acid (OR = 1.21; 95%CI: 1.07, 1.37). We detected larger SGA risks for several THM4 among the prospective cohort and case-control studies compared to retrospective cohorts and for the SGA3/5% (vs. SGA10%) studies. The THM4 meta-regression showed associations between SGA and the total quality score based on categorical or continuous measures. For example, an OR of 1.03 (95%CI: 1.01, 1.06) was detected for each 10-point increase in the study quality score based on our systematic review. CONCLUSIONS: We detected a small increased risk of SGA based on 18 THM4 study populations that was comparable to a previous meta-analysis of eight THM4 study populations. We also found increased risks for other THM4 and HAA measures not previously examined; these results were robust after accounting for outliers, publication bias, type of SGA classification, different exposure windows, and other factors.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Disinfectants/toxicity , Disinfection , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy , Prospective Studies , Retrospective Studies , Trihalomethanes/toxicity , Water Pollutants, Chemical/analysis
19.
Opt Express ; 28(21): 31020-31033, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115086

ABSTRACT

In recent years, newly emerging photovoltaic (PV) devices based on silicon nanowire solar cells (SiNW-SCs) have attracted considerable research attention. This is due to their efficient light-trapping capability and large carrier transportation and collection with compact size. However, there is a strong desire to find effective strategies to provide high and wideband optical absorption. In this paper, a modified circular nanowire (NW) with a nanocrescent hole is newly introduced and analyzed for solar cell applications. The crescent hole can strongly improve the light absorption through the NW due to the excitation of numbers of modes that can be coupled with the incident light. The material index, volume, and position of the nanohole are studied to significantly increase the optical absorption efficiency and hence the power conversion efficiency (PCE). The absorption performance can be further preserved by using a silicon substrate due to the coupling between the supported modes by the NW, and that of the substrate. The optical and electrical characteristics of the suggested design are investigated using finite difference time domain and finite element methods via Lumerical software packages. The reported asymmetric design offers higher optical and electrical efficiencies compared to the conventional NW counterpart. The proposed NW offers a short circuit current density (Jsc) of 33.85 (34.35) mA/cm2 and power conversion efficiency (PCE) of 16.78 (17.05) % with an enhancement of 16.3 (16.8) % and 17.3 (18.4) % for transverse magnetic (TM) and transverse electric (TE) polarizations, respectively, compared to the conventional cylindrical counterpart.

20.
Appl Opt ; 59(20): 5948-5956, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32672738

ABSTRACT

Since the first observation by Alfano and Shapiro in the 1970s [Phys. Rev. Lett.24, 584 (1970)PRLTAO0031-900710.1103/PhysRevLett.24.584], supercontinuum generation study has become an attractive research area in the field of broadband light source design, including its use in various applications associated with nonlinear optics in recent years. In this work, the numerical demonstration of ultrabroadband supercontinuum generation in the mid-infrared (MIR) region via the use of complementary metal-oxide semiconductor compatible Si-rich silicon nitride as the core in a planar waveguide design employing one of two materials, either LiNbO3 or MgF2 glass, as the top and bottom claddings is explored. A rigorous numerical investigation of broadband source design in the MIR using 2 mm long Si-rich silicon nitride waveguides is carried out in terms of waveguide structural parameter variations, input peak power variation, varying unexpected deformation of the waveguide along the core region during fabrication, and spectral coherence analysis. Among the several waveguide models studied, two promising designs are identified for wideband supercontinuum generation up to the MIR using a relatively low input peak power of 50 W. Simulation results reveal that spectral coverage spanning from 0.8 µm to 4.6 µm can be obtained by using a LiNbO3-cladded waveguide, and similar spectral coverage is also predicted for the other design, a MgF2-cladded waveguide. To the best of our knowledge, this is the widest spectral span in the MIR region employing a Si-rich silicon nitride waveguide so far. In dispersion tuning as well as in supercontinuum generation, the effect of possible unexpected waveguide deformation along the transverse directions during fabrication is also studied. No significant amount of spectral change is observed in the proposed model for a maximum of 10° inside/outside variation along the width. On the other hand, even 1° upward/downward variation along the thickness could cause substantial spectral change at the waveguide output. Finally, the obtained output spectra from the proposed waveguides are found to be highly coherent and can be applied in various MIR region applications such as optical coherence tomography, spectroscopic measurement, and frequency metrology.

SELECTION OF CITATIONS
SEARCH DETAIL
...