Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(14): 9714-9721, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551577

ABSTRACT

We present an electrochemical long period fiber grating (LPFG) sensor for electroactive species with an optically transparent electrode. The sensor was fabricated by coating indium tin oxide onto the surface of LPFG using a polygonal barrel-sputtering method. LPFG was produced by an electric arc-induced technique. The sensing is based on change in the detection of electron density on the electrode surface during potential application and its reduction by electrochemical redox of analytes. Four typical electroactive species of methylene blue, hexaammineruthenium(III), ferrocyanide, and ferrocenedimethanol were used to investigate the sensor performance. The concentrations of analytes were determined by the modulation of the potential as the change in transmittance around the resonance band of LPFG. The sensitivity of the sensor, particularly to methylene blue, was high, and the sensor responded to a wide concentration range of 0.001 mM to 1 mM.

2.
Anal Sci ; 33(8): 883-887, 2017.
Article in English | MEDLINE | ID: mdl-28794323

ABSTRACT

A fiber-optic sensor capable of real-time monitoring of biofilm formation in water was developed. The sensor can be easily fabricated by removing the cladding of a multimode fiber optic to expose the core. The sensing action is based on the penetration of an evanescent wave through a biofilm formed on the surface of the exposed fiber core during total internal reflection. The proposed setup can be used to analyze the transmittance response over a wide wavelength range using a white-light source and a spectroscopy detector. The change in transmittance with respect to the biofilm formation on the fiber core surface was observed. The findings from this study showed that the sensor detection had better sensitivity at near-infrared wavelengths than at visible-light wavelengths. Moreover, the sensitivity of this sensor could be controlled by surface modifications of the core surface through electrostatic interactions, involving a silane coupling layer, polyanions, and polycations. The developed sensor was successfully applied to evaluating of the effectiveness of a commercial biofilm inhibitor.


Subject(s)
Biofilms , Fiber Optic Technology , Fiber Optic Technology/instrumentation , Surface Properties , Time Factors , Water/metabolism
3.
Anal Sci ; 31(3): 177-83, 2015.
Article in English | MEDLINE | ID: mdl-25765379

ABSTRACT

This study proposes an optical fiber sensor for calcium carbonate (CaCO3) scale formation in water. The sensor is easily fabricated by removing the cladding of a multimode fiber to expose the core towards the surrounding medium in order to detect refractive index change. A variation of the transmittance response from the high refractive index of CaCO3 which precipitated on the fiber core surface was observed. The proposed setup can be used to analyze the transmittance response over wide range of wavelength using white light as a source and also a spectroscopy detector. The curve of the transmittance percentage over time showed that a fiber core with 200 µm has higher sensitivity as compared to a fiber core with 400 µm. The findings from this study showed that the sensor detection region at near infrared (NIR) wavelengths showed better sensitivity than visible light (VIS) wavelengths. Field tests were conducted using natural geothermal water at Matsushiro, Japan in order to verify the performance of the proposed sensor. The optical response was successfully evaluated and the analytical results confirmed the capability of monitoring scale formation in a geothermal water environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...