Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577246

ABSTRACT

Water, one of the most valuable resources, is underutilized in irrigated rice production. The yield of rice, a staple food across the world, is highly dependent on having proper irrigation systems. Alternate wetting and drying (AWD) is an effective irrigation method mainly used for irrigated rice production. However, unattended, manual, small-scale, and discrete implementations cannot achieve the maximum benefit of AWD. Automation of large-scale (over 1000 acres) implementation of AWD can be carried out using wide-area wireless sensor network (WSN). An automated AWD system requires three different WSNs: one for water level and environmental monitoring, one for monitoring of the irrigation system, and another for controlling the irrigation system. Integration of these three different WSNs requires proper dimensioning of the AWD edge elements (sensor and actuator nodes) to reduce the deployment cost and make it scalable. Besides field-level monitoring, the integration of external control parameters, such as real-time weather forecasts, plant physiological data, and input from farmers, can further enhance the performance of the automated AWD system. Internet of Things (IoT) can be used to interface the WSNs with external data sources. This research focuses on the dimensioning of the AWD system for the multilayer WSN integration and the required algorithms for the closed loop control of the irrigation system using IoT. Implementation of the AWD for 25,000 acres is shown as a possible use case. Plastic pipes are proposed as the means to transport and control proper distribution of water in the field, which significantly helps to reduce conveyance loss. This system utilizes 250 pumps, grouped into 10 clusters, to ensure equal water distribution amongst the users (field owners) in the wide area. The proposed automation algorithm handles the complexity of maintaining proper water pressure throughout the pipe network, scheduling the pump, and controlling the water outlets. Mathematical models are presented for proper dimensioning of the AWD. A low-power and long-range sensor node is developed due to the lack of cellular data coverage in rural areas, and its functionality is tested using an IoT platform for small-scale field trials.


Subject(s)
Internet of Things , Oryza , Automation , Desiccation , Water
2.
Sensors (Basel) ; 20(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023975

ABSTRACT

A minirhizotron is an in situ root imaging system that captures components of root system architecture dynamics over time. Commercial minirhizotrons are expensive, limited to white-light imaging, and often need human intervention. The implementation of a minirhizotron needs to be low cost, automated, and customizable to be effective and widely adopted. We present a newly designed root imaging system called SoilCam that addresses the above mentioned limitations. The imaging system is multi-modal, i.e., it supports both conventional white-light and multispectral imaging, with fully automated operations for long-term in-situ monitoring using wireless control and access. The system is capable of taking 360° images covering the entire area surrounding the tube. The image sensor can be customized depending on the spectral imaging requirements. The maximum achievable image quality of the system is 8 MP (Mega Pixel)/picture, which is equivalent to a 2500 DPI (dots per inch) image resolution. The length of time in the field can be extended with a rechargeable battery and solar panel connectivity. Offline image-processing software, with several image enhancement algorithms to eliminate motion blur and geometric distortion and to reconstruct the 360° panoramic view, is also presented. The system is tested in the field by imaging canola roots to show the performance advantages over commercial systems.


Subject(s)
Image Processing, Computer-Assisted/methods , Plant Roots/ultrastructure , Software , Algorithms , Humans
3.
IEEE Access ; 8: 188538-188551, 2020.
Article in English | MEDLINE | ID: mdl-34812362

ABSTRACT

In the early months of the COVID-19 pandemic with no designated cure or vaccine, the only way to break the infection chain is self-isolation and maintaining the physical distancing. In this article, we present a potential application of the Internet of Things (IoT) in healthcare and physical distance monitoring for pandemic situations. The proposed framework consists of three parts: a lightweight and low-cost IoT node, a smartphone application (app), and fog-based Machine Learning (ML) tools for data analysis and diagnosis. The IoT node tracks health parameters, including body temperature, cough rate, respiratory rate, and blood oxygen saturation, then updates the smartphone app to display the user health conditions. The app notifies the user to maintain a physical distance of 2 m (or 6 ft), which is a key factor in controlling virus spread. In addition, a Fuzzy Mamdani system (running at the fog server) considers the environmental risk and user health conditions to predict the risk of spreading infection in real time. The environmental risk conveys from the virtual zone concept and provides updated information for different places. Two scenarios are considered for the communication between the IoT node and fog server, 4G/5G/WiFi, or LoRa, which can be selected based on environmental constraints. The required energy usage and bandwidth (BW) are compared for various event scenarios. The COVID-SAFE framework can assist in minimizing the coronavirus exposure risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...