Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 33(1): 219-32, 2015.
Article in English | MEDLINE | ID: mdl-24666138

ABSTRACT

C1 domains are small zinc-binding structural units of approximately 50 amino acids, originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to the DAG/phorbol ester are termed as typical, and those that do not respond to DAG/phorbol ester are termed as atypical. To design molecules targeting a specific C1 domain for regulating a specific disease state, it is important to understand the factors that make a C1 domain responsive to DAG/phorbol ester. Here, we determined the volume and surface area of the ligand-binding site for all known C1 domains. No correlation was found between the volume/surface area of ligand-binding site and the DAG/phorbol ester-binding affinity. Solvated molecular dynamics simulation reveals that the presence of water molecules affects the flexibility of the ligand-binding site. Contributions of the binding site residues, their orientations, and the membrane lipids on the responsiveness of a C1 domain towards DAG/phorbol ester have been discussed.


Subject(s)
Diglycerides/chemistry , Phorbol Esters/chemistry , Protein Kinase C/chemistry , Protein Structure, Tertiary , Amino Acid Sequence , Animals , Binding Sites/genetics , Diglycerides/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation , Phorbol Esters/metabolism , Pliability , Protein Binding , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Structure, Secondary , Thermodynamics , Water/chemistry , Water/metabolism
2.
3.
Biochem J ; 451(1): 33-44, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23289588

ABSTRACT

PKC (protein kinase C) θ is predominantly expressed in T-cells and is critically involved in immunity. Design of PKCθ-selective molecules to manage autoimmune disorders by targeting its activator-binding C1 domain requires the knowledge of its structure and the activator-binding residues. The C1 domain consists of twin C1 domains, C1A and C1B, of which C1B plays a critical role in the membrane translocation and activation of PKCθ. In the present study we determined the crystal structure of PKCθC1B to 1.63 Å (1 Å=0.1 nm) resolution, which showed that Trp(253) at the rim of the activator-binding pocket was orientated towards the membrane, whereas in PKCδC1B the homologous tryptophan residue was orientated away from the membrane. This particular orientation of Trp(253) affects the size of the activator-binding pocket and the membrane affinity. To further probe the structural constraints on activator-binding, five residues lining the activator-binding site were mutated (Y239A, T243A, W253G, L255G and Q258G) and the binding affinities of the PKCθC1B mutants were measured. These mutants showed reduced binding affinities for phorbol ester [PDBu (phorbol 12,13-dibutyrate)] and diacylglycerol [DOG (sn-1,2-dioctanoylglycerol), SAG (sn-1-stearoyl 2-arachidonyl glycerol)]. All five full-length PKCθ mutants exhibited reduced phorbol-ester-induced membrane translocation compared with the wild-type. These results provide insights into the PKCθ activator-binding domain, which will aid in future design of PKCθ-selective molecules.


Subject(s)
Enzyme Activators/chemistry , Isoenzymes/metabolism , Protein Kinase C/metabolism , Amino Acid Substitution , Animals , Binding Sites , Enzyme Activators/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Mice , Mutation, Missense , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Kinase C-theta , Protein Structure, Tertiary , Protein Transport , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
4.
Bioorg Med Chem ; 19(21): 6196-202, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21975067

ABSTRACT

The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target because of its involvement in the regulation of various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. The endogenous PKC activator diacylglycerol contains two long carbon chains, which are attached to the glycerol moiety via ester linkage. Natural product curcumin (1), the active constituent of Curcuma L., contains two carbonyl and two hydroxyl groups. It modulates PKC activity and binds to the activator binding site (Majhi et al., Bioorg. Med. Chem.2010, 18, 1591). To investigate the role of the carbonyl and hydroxyl groups of curcumin in PKC binding and to develop curcumin derivatives as effective PKC modulators, we synthesized several isoxazole and pyrazole derivatives of curcumin (2-6), characterized their absorption and fluorescence properties, and studied their interaction with the activator-binding second cysteine-rich C1B subdomain of PKCδ, PKCε and PKCθ. The EC(50)s of the curcumin derivatives for protein fluorescence quenching varied in the range of 3-25 µM. All the derivatives showed higher binding with the PKCθC1B compared with PKCδC1B and PKCεC1B. Fluorescence emission maxima of 2-5 were blue shifted in the presence of the C1B domains, confirming their binding to the protein. Molecular docking revealed that hydroxyl, carbonyl and pyrazole ring of curcumin (1), pyrazole (2), and isoxazole (4) derivatives form hydrogen bonds with the protein residues. The present result shows that isoxazole and pyrazole derivatives bind to the activator binding site of novel PKCs and both carbonyl and hydroxy groups of curcumin play roles in the binding process, depending on the nature of curcumin derivative and the PKC isotype used.


Subject(s)
Curcumin/analogs & derivatives , Isoxazoles/chemistry , Protein Kinase C/metabolism , Pyrazoles/chemistry , Curcumin/metabolism , Curcumin/pharmacology , Isoenzymes , Isoxazoles/chemical synthesis , Isoxazoles/metabolism , Isoxazoles/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Kinase C/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacology , Spectrometry, Fluorescence
5.
Mol Pharmacol ; 80(5): 769-81, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21795584

ABSTRACT

Although inflammatory pathways have been linked with various chronic diseases including cancer, identification of an agent that can suppress these pathways has therapeutic potential. Herein we describe the identification of a novel compound bharangin, a diterpenoid quinonemethide that can suppress pro-inflammatory pathways specifically. We found that bharangin suppresses nuclear factor (NF)-κB activation induced by pro-inflammatory cytokine, tumor promoter, cigarette smoke, and endotoxin. Inhibition of NF-κB activation was mediated through the suppression of phosphorylation and degradation of inhibitor of nuclear factor-κB (IκBα); inhibition of IκBα kinase activation; and suppression of p65 nuclear translocation, and phosphorylation. The diterpenoid inhibited binding of p65 to DNA. A reducing agent reversed the inhibitory effect, and mutation of the Cys(38) of p65 to serine abrogated the effect of bharangin on p65-DNA binding. Molecular docking revealed strong interaction of the ligand with the p65 via two hydrogen bonds one with Lys(37) (2.204 Å) and another with Cys(38) (2.023 Å). The inhibitory effect of bharangin on NF-κB activation was specific, inasmuch as binding of activator protein-1 and octameric transcription factor 1 to DNA was not affected. Suppression of NF-κB activation by this diterpenoid caused the down-regulation of the expression of proteins involved in tumor cell survival, proliferation, invasion, and angiogenesis, leading to potentiation of apoptosis, suppression of proliferation, and invasion of tumor cells. Furthermore, the genetic deletion of p65 and mutation of p65Cys(38) residue to Ser abolished the affect of bharangin. Overall, our results demonstrate that bharangin specifically inhibits the NF-κB activation pathway by modifying p65 and inhibiting IκBα kinase activation and potentiates apoptosis in tumor cells.


Subject(s)
Cysteine/metabolism , Flavonoids/pharmacology , Gene Expression/physiology , NF-kappa B/metabolism , Apoptosis , Blotting, Western , Carcinogens/pharmacology , Cell Line, Tumor , Electrophoretic Mobility Shift Assay , Genes, Reporter , Humans , Immunohistochemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , NF-kappa B/chemistry , NF-kappa B/physiology , Phosphorylation
6.
Bioorg Med Chem ; 18(4): 1591-8, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20100661

ABSTRACT

Protein kinase C (PKC) is a family of serine/threonine kinases that play a central role in cellular signal transduction. The second messenger diacylglycerol having two long carbon chains acts as the endogenous ligand for the PKCs. Polyphenol curcumin, the active constituent of Curcuma longa is an anti-cancer agent and modulates PKC activity. To develop curcumin derivatives as effective PKC activators, we synthesized several long chain derivatives of curcumin, characterized their absorption and fluorescence properties and studied their interaction with the activator binding second cysteine-rich C1B subdomain of PKCdelta, PKCepsilon and PKCtheta. Curcumin (1) and its C16 long chain analog (4) quenched the intrinsic fluorescence of PKCdeltaC1B, PKCepsilonC1B and PKCthetaC1B in a manner similar to that of PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). The EC(50)s of the curcumin derivatives for fluorescence quenching varied in the range of 4-11 microM, whereas, EC(50)s for TPA varied in the range of 3-6 microM. Fluorescence emission maxima of 1 and 4 were blue shifted and the fluorescence anisotropy values were increased in the presence of the C1B domains in a manner similar to that shown by the fluorescent analog of TPA, sapintoxin-D, confirming that they were bound to the proteins. Molecular docking of 1 and 4 with novel PKC C1B revealed that both the molecules form hydrogen bonds with the protein residues. The present result shows that curcumin and its long chain derivatives bind to the C1B subdomain of novel PKCs and can be further modified structurally to improve its binding and activity.


Subject(s)
Curcumin/chemistry , Protein Kinase C/chemistry , Binding Sites , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization
7.
Biochem J ; 421(3): 405-13, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19432558

ABSTRACT

Alcohols regulate the expression and function of PKC (protein kinase C), and it has been proposed that an alcohol-binding site is present in PKC alpha in its C1 domain, which consists of two cysteine-rich subdomains, C1A and C1B. A PKC epsilon-knockout mouse showed a significant decrease in alcohol consumption compared with the wild-type. The aim of the present study was to investigate whether an alcohol-binding site could be present in PKC epsilon. Here we show that ethanol inhibited PKC epsilon activity in a concentration-dependent manner with an EC50 (equilibrium ligand concentration at half-maximum effect) of 43 mM. Ethanol, butanol and octanol increased the binding affinity of a fluorescent phorbol ester SAPD (sapintoxin-D) to PKC epsilon C1B in a concentration-dependent manner with EC50 values of 78 mM, 8 mM and 340 microM respectively, suggesting the presence of an allosteric alcohol-binding site in this subdomain. To identify this site, PKC epsilon C1B was photolabelled with 3-azibutanol and 3-azioctanol and analysed by MS. Whereas azibutanol preferentially labelled His236, Tyr238 was the preferred site for azioctanol. Inspection of the model structure of PKC epsilon C1B reveals that these residues are 3.46 A (1 A=0.1 nm) apart from each other and form a groove where His236 is surface-exposed and Tyr238 is buried inside. When these residues were replaced by alanine, it significantly decreased alcohol binding in terms of both photolabelling and alcohol-induced SAPD binding in the mutant H236A/Y238A. Whereas Tyr238 was labelled in mutant H236A, His236 was labelled in mutant Y238A. The present results provide direct evidence for the presence of an allosteric alcohol-binding site on protein kinase C epsilon and underscore the role of His236 and Tyr238 residues in alcohol binding.


Subject(s)
Alcoholism/metabolism , Alcohols/metabolism , Protein Kinase C-epsilon/chemistry , Protein Kinase C-epsilon/metabolism , Amino Acid Sequence , Binding Sites , Crystallization , Humans , Kinetics , Molecular Conformation , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Protein Kinase C-epsilon/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...