Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 23(1): 177-190, 2017 01.
Article in English | MEDLINE | ID: mdl-27381364

ABSTRACT

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Subject(s)
Carbon Cycle , Forests , Remote Sensing Technology , Biomass , Carbon , Trees
2.
Ecology ; 97(5): 1207-17, 2016 May.
Article in English | MEDLINE | ID: mdl-27349097

ABSTRACT

Ecological communities are subjected to stochasticity in the form of demographic and environmental variance. Stochastic models that contain only demographic variance (neutral models) provide close quantitative fits to observed species-abundance distributions (SADs) but substantially underestimate observed temporal species-abundance fluctuations. To provide a holistic assessment of whether models with demographic and environmental variance perform better than neutral models, the fit of both to SADs and temporal species-abundance fluctuations at the same time has to be tested quantitatively. In this study, we quantitatively test how closely a model with demographic and environmental variance reproduces total numbers of species, total abundances, SADs and temporal species-abundance fluctuations for two tropical forest tree communities, using decadal data from long-term monitoring plots and considering individuals larger than two size thresholds for each community. We find that the model can indeed closely reproduce these static and dynamic patterns of biodiversity in the two communities for the two size thresholds, with better overall fits than corresponding neutral models. Therefore, our results provide evidence that stochastic models incorporating demographic and environmental variance can simultaneously capture important static and dynamic biodiversity patterns arising in tropical forest communities.


Subject(s)
Biodiversity , Environment , Forests , Models, Biological , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...