Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Invest ; 70(3.4): 403-410, 2023.
Article in English | MEDLINE | ID: mdl-37940524

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.


Subject(s)
Adrenoleukodystrophy , Ceramides , Humans , Adrenoleukodystrophy/genetics , Ceramides/blood
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201429

ABSTRACT

Obesity increases the risk of postmenopausal breast cancer (BC). This risk is mediated by obesity-induced changes in the adipose-derived secretome (ADS). The pathogenesis of BC in obesity is stimulated by mTOR hyperactivity. In obesity, leucine might support mTOR hyperactivity. Leucine uptake by BC cells is through L-Type Amino Acid Transporter 1 (LAT1). Our objective was to link obesity-ADS induction of LAT1 to the induction of mTOR signaling. Lean- and obese-ADS were obtained from lean and obese mice, respectively. Breast ADS was obtained from BC patients. Estrogen-receptor-positive BC cells were stimulated with ADS. LAT1 activity was determined by uptake of 3H-leucine. The LAT1/CD98 complex, and mTOR signaling were assayed by Western blot. The LAT1 antagonists, BCH and JPH203, were used to inhibit LAT1. Cell migration and invasion were measured by Transwell assays. The results showed obese-ADS-induced LAT1 activity by increasing transporter affinity for leucine. Consistent with this mechanism, LAT1 and CD98 expression were unchanged. Induction of mTOR by obese-ADS was inhibited by LAT1 antagonists. Breast ADS from patients with BMIs > 30 stimulated BC cell migration and invasiveness. Collectively, our findings show that obese-ADS induction of LAT1 supports mTOR hyperactivity in luminal BC cells.


Subject(s)
Adipose Tissue/metabolism , Breast Neoplasms/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Female , Humans , Leucine/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Estrogen/metabolism , Signal Transduction
3.
Cells ; 10(3)2021 03 21.
Article in English | MEDLINE | ID: mdl-33801010

ABSTRACT

In Inflammatory Bowel Disease (IBD), malabsorption of electrolytes (NaCl) results in diarrhea. Inhibition of coupled NaCl absorption, mediated by the dual operation of Na:H and Cl:HCO3 exchangers on the brush border membrane (BBM) of the intestinal villus cells has been reported in IBD. In the SAMP1/YitFcs (SAMP1) mice model of spontaneous ileitis, representing Crohn's disease, DRA (Downregulated in Adenoma) mediated Cl:HCO3 exchange was shown to be inhibited secondary to diminished affinity of the exchanger for Cl. However, NHE3 mediated Na:H exchange remained unaffected. Mast cells and their secreted mediators are known to be increased in the IBD mucosa and can affect intestinal electrolyte absorption. However, how mast cell mediators may regulate Cl:HCO3 exchange in SAMP1 mice is unknown. Therefore, the aim of this study was to determine the effect of mast cell mediators on the downregulation of DRA in SAMP1 mice. Mast cell numbers and their degranulation marker enzyme (ß-hexosaminidase) levels were significantly increased in SAMP1 mice compared to control AKR mice. However, treatment of SAMP1 mice with a mast cell stabilizer, ketotifen, restored the ß-hexosaminidase enzyme levels to normal in the intestine, demonstrating stabilization of mast cells by ketotifen. Moreover, downregulation of Cl:HCO3 exchange activity was restored in ketotifen treated SAMP1 mice. Kinetic studies showed that ketotifen restored the altered affinity of Cl:HCO3 exchange in SAMP1 mice villus cells thus reinstating its activity to normal. Further, RT-qPCR, Western blot and immunofluorescence studies showed that the expression levels of DRA mRNA and BBM protein, respectively remained unaltered in all experimental conditions, supporting the kinetic data. Thus, inhibition of Cl:HCO3 exchange resulting in chloride malabsorption leading to diarrhea in IBD is likely mediated by mast cell mediators.


Subject(s)
Chlorides/metabolism , Ileitis/metabolism , Intestinal Absorption , Intestine, Small/metabolism , Mast Cells/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Bicarbonates/metabolism , Cell Degranulation/drug effects , Chronic Disease , Disease Models, Animal , Ileum/drug effects , Ileum/metabolism , Ileum/pathology , Inflammation/pathology , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Ketotifen/pharmacology , Kinetics , Male , Mast Cells/drug effects , Mast Cells/physiology , Mice , Microvilli/drug effects , Microvilli/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Hydrogen Exchangers/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , beta-N-Acetylhexosaminidases/metabolism
4.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920650

ABSTRACT

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl-/HCO3- exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl-/HCO3- exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl-/HCO3- exchangers, were unaltered. Thus, inhibition of villus cell Cl-/HCO3- exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl-, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.


Subject(s)
Arachidonic Acids/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Enterocytes/metabolism , Ileitis/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Arachidonic Acids/pharmacology , Cells, Cultured , Chloride-Bicarbonate Antiporters/antagonists & inhibitors , Cyclooxygenase Inhibitors/pharmacology , Enterocytes/drug effects , Enzyme Inhibitors/pharmacology , Ileitis/genetics , Indoles/pharmacology , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , Piroxicam/pharmacology
5.
Int J Mol Sci ; 20(6)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917504

ABSTRACT

Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Enterocytes/metabolism , Glutamate Plasma Membrane Transport Proteins/metabolism , Microvilli/metabolism , Symporters/metabolism , Animals , Cell Line , Enterocytes/drug effects , Enterocytes/pathology , Inflammation/metabolism , Peroxynitrous Acid/toxicity , Rats
6.
Article in English | MEDLINE | ID: mdl-29462674

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid that induces diverse biological responses. Recently, we found that LPA ameliorates NSAIDs-induced gastric ulcer in mice. Here, we quantified LPA in 21 medicinal herbs used for treatment of gastrointestinal (GI) disorders. We found that half of them contained LPA at relatively high levels (40-240 µg/g) compared to soybean seed powder (4.6 µg/g), which we previously identified as an LPA-rich food. The LPA in peony (Paeonia lactiflora) root powder is highly concentrated in the lipid fraction that ameliorates indomethacin-induced gastric ulcer in mice. Synthetic 18:1 LPA, peony root LPA and peony root lipid enhanced prostaglandin E2 production in a gastric cancer cell line, MKN74 cells that express LPA2 abundantly. These materials also prevented indomethacin-induced cell death and stimulated the proliferation of MKN74 cells. We found that LPA was present in stomach fluids at 2.4 µM, which is an effective LPA concentration for inducing a cellular response in vitro. These results indicated that LPA is one of the active components of medicinal herbs for the treatment of GI disorder and that orally administered LPA-rich herbs may augment the protective actions of endogenous LPA on gastric mucosa.


Subject(s)
Dinoprostone/metabolism , Indomethacin/adverse effects , Lysophospholipids/therapeutic use , Plants, Medicinal/chemistry , Animals , Cell Death/drug effects , Cell Proliferation/drug effects , Mice , Signal Transduction/drug effects , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism
7.
Biochem Biophys Res Commun ; 462(2): 159-64, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25951977

ABSTRACT

In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.


Subject(s)
Bone Remodeling/physiology , Osteoclasts/metabolism , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Alendronate/pharmacology , Animals , Becaplermin , Biphenyl Compounds/pharmacology , Bone Remodeling/drug effects , Bone Remodeling/genetics , Cathepsin K/antagonists & inhibitors , Cathepsin K/deficiency , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/physiology , Cysteine Proteinase Inhibitors/pharmacology , Gene Expression/drug effects , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/drug effects , Platelet-Derived Growth Factor/genetics , Proto-Oncogene Proteins c-sis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism
8.
Biochem Biophys Rep ; 4: 234-242, 2015 Dec.
Article in English | MEDLINE | ID: mdl-29124209

ABSTRACT

Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7-9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling.

9.
Glycobiology ; 23(4): 495-504, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23363739

ABSTRACT

Human sialidase 2 (NEU2) is a cytoplasmic sialidase that degrades sialylglycoconjugates, including glycoproteins and gangliosides, via hydrolysis of terminal sialic acids to produce asialo-type molecules. Here, we first report the inhibitory effects of a series of synthetic sialyldendrimers comprising three types [Dumbbell(1)6-S-Neu5Ac(6), Fan(0)3-S-Neu5Ac(3) and Ball(0)4-S-NeuAc(4)] toward recombinant human NEU2 in vitro. Among them, Dumbbell(1)6-S-Neu5Ac(6) exhibited the most potent inhibitory activity (concentration causing 50% inhibition (IC(50)), 0.4 ∼ 0.5 mM). In addition, NeuSLac and NeuSCel carrying thiosialyltrisaccharide moieties exhibited more potent inhibitory effects than NeuSGal and NeuSGlc carrying thiosialyldisaccharides. Docking models composed of NEU2 and the thiosialyloligosaccharide suggested that the active pocket of NEU2 prefers the second galactose-ß (Galß) to the glucose-ß (Glcß) residue in the trisaccharide structure, there being a hydrogen bond between the 4-hydroxy group of the second Galß and the side chain of the D46 residue of NEU2. The third Glcß residues of NeuSLac and NeuSCel were also predicted to be stabilized by hydrogen bonds with the side chains of the R21, R304, D358 and Y359 residues of NEU2. NEU2 mutants (D358A and Y359A) exhibited reduced affinity for NeuSLac carrying thiosialyltrisaccharide moieties, suggesting the significant roles of D358 and Y359 residues in recognition of thiosialyltrisaccharide moieties of NeuSLac bound in the active pocket of NEU2. Thus, the present sialyldendrimers could be utilized not only as a new class of NEU2 inhibitors but also as molecular probes for evaluating the biological functions of NEU2, including the catalytic activity and mechanism as to natural substrates carrying sialyloligosaccharides.


Subject(s)
Dendrimers/chemistry , Enzyme Inhibitors/chemistry , N-Acetylneuraminic Acid/chemistry , Neuraminidase/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Carbohydrate Sequence , Enzyme Inhibitors/pharmacology , Galactose/chemistry , Glucose/chemistry , Hydrogen Bonding , Molecular Docking Simulation , Molecular Sequence Data , Mutation, Missense , Neuraminidase/chemistry , Neuraminidase/genetics , Recombinant Proteins/antagonists & inhibitors , Substrate Specificity , Trisaccharides/chemistry
10.
Fitoterapia ; 79(7-8): 584-6, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18621115

ABSTRACT

Crude extracts and 2alpha,3beta,21beta,24beta,28-pentahydroxy-olean-12-ene (1) obtained from the root of Laportea crenulata exhibited remarkable antibacterial activities against both Gram (+) and Gram (-) bacteria. The antifungal activities of crude extracts and compound (1) were also determined. The cytotoxic activities of crude extracts and compound (1) were observed by brine shrimp bioassay and LC(50) value of the compound (1) was found to be 27.54 microg/ml.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Cytotoxins/pharmacology , Fungi/drug effects , Plant Extracts/pharmacology , Urticaceae/chemistry , Animals , Artemia/drug effects , Lethal Dose 50 , Phytotherapy , Plant Extracts/adverse effects , Plant Roots
11.
Fitoterapia ; 75(2): 130-3, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15030916

ABSTRACT

A new fatty acid, E-octadec-7-en-5-ynoic acid (1), has been isolated from chloroform extract of the roots of Capparis zeylanica. The structure of this compound was established primarily by 1D and 2D-NMR spectroscopy.


Subject(s)
Capparis , Oleic Acids/chemistry , Phytotherapy , Plant Extracts/chemistry , Humans , Plant Roots , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...