Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(37): 25319-25323, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28890956

ABSTRACT

We investigate the electronic structures and electronic transport properties of zigzag phosphorene nanoribbons with oxygen-saturated edges (O-zPNRs) by using the spin-polarized density functional theory and the nonequilibrium Green's function method. The results show that the O-zPNR is an antiferromagnetic (AFM) or ferromagnetic (FM) semiconductor with spins localized at two ribbon edges anti-parallel or parallel with each other. The electronic transmission for the single AFM or FM O-zPNR is zero when a bias voltage is applied to the two electrodes made of the same type O-zPNR. Nonzero transmission arises for the AFM-AFM and FM-FM O-zPNR heterojunctions. The transmission spectrum and the electrical current are fully spin polarized for the FM-FM O-zPNR heterojunction. An in-plane transverse electrical field can effectively manipulate the electronic structure and spin-dependent electronic transport. It induces splitting of the spins of the two edges and makes the AFM O-zPNR become a half metal. Moreover, the transverse electrical field gives rise to the transmission spectrum and the spin polarized electrical current for the AFM-AFM O-zPNR heterojunction. The degree of spin polarization can be tuned by the strength of the transverse field.

2.
Sci Rep ; 5: 17980, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26656257

ABSTRACT

We present first-principles calculations of electronic structures of a class of two-dimensional (2D) honeycomb structures of group-V binary compounds. Our results show these new 2D materials are stable semiconductors with direct or indirect band gaps. The band gap can be tuned by applying lattice strain. During their stretchable regime, they all exhibit metal-indirect gap semiconductor-direct gap semiconductor-topological insulator (TI) transitions with increasing strain from negative (compressive) to positive (tensile) values. The topological phase transition results from the band inversion at the Γ point which is due to the evolution of bonding and anti-bonding states under lattice strain.

3.
Inorg Chem ; 52(21): 12529-34, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24152234

ABSTRACT

We have studied the electronic structures and magnetism of SrFeO2 under pressure by first-principles calculations in the framework of density functional theory (DFT) with GGA+U and HSE06 hybrid functionals, respectively. The pressure-induced spin transition from S = 2 to S = 1 and the antiferromagnetic-ferromagnetic (AFM-FM) transition observed in experiment are well reproduced by taking the site repulsion U and its pressure dependence into account. The electronic structure and its change with the pressure can be qualitatively understood in an ionic model together with the hybridization effects between the Fe 3d and O 2p states. It is found that the pressure leads to a change in Fe 3d electronic configuration from (d(z(2)))(2)(d(xz)d(yz))(2)(d(xy))(1)(d(x(2)-y(2)))(1) under ambient conditions to (d(z(2)))(2)(d(xz)d(yz))(3)(d(xy))(1)(d(x(2)-y(2)))(0) at high pressure. As a result, the spin state transits from S = 2 to S = 1 and both the antiferromagnetic intralayer Fe-O-Fe superexchange interaction and the interlayer Fe-Fe direction exchange coupling at ambient pressure become ferromagnetic at high pressure according to the Goodenough-Kanamori (G-K) rules. Additionally, our calculations predict another spin transition from S = 1 to S = 0 at pressures of about 220 GPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...