Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(23): 15876-15906, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756852

ABSTRACT

The intriguing optoelectronic properties, diverse applications, and facile fabrication techniques of perovskite materials have garnered substantial research interest worldwide. Their outstanding performance in solar cell applications and excellent efficiency at the lab scale have already been proven. However, owing to their low stability, the widespread manufacturing of perovskite solar cells (PSCs) for commercialization is still far off. Several instability factors of PSCs, including the intrinsic and extrinsic instability of perovskite materials, have already been identified, and a variety of approaches have been adopted to improve the material quality, stability, and efficiency of PSCs. In this review, we have comprehensively presented the significance of band gap tuning in achieving both high-performance and high-stability PSCs in the presence of various degradation factors. By investigating the mechanisms of band gap engineering, we have highlighted its pivotal role in optimizing PSCs for improved efficiency and resilience.

2.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792068

ABSTRACT

Perylenetetracarboxylic diimide (PTCDI) is an n-type organic semiconductor molecule that has been widely utilized in numerous applications such as photocatalysis and field-effect transistors. Polarizability and dipole moment, which are inherent properties of molecules, are important parameters that determine their responses to external electric and optical fields, physical properties, and reactivity. These parameters are fundamentally important for the design of innovative materials. In this study, the effects of external electric fields on absorption and fluorescence spectra were investigated to obtain the PTCDI parameters. The PTCDI substituted by an octyl group (N,N'-Dioctyl-3,4,9,10-perylenedicarboximide) dispersed in a polymethyl methacrylate (PMMA) matrix was studied in this work. The features of vibronic progression in the absorption spectrum were analogous to those observed in solution. The red shift of the absorption band caused by the Stark effect was mainly observed in the presence of an external electric field. Changes in parameters such as the dipole moment and polarizability between the ground and the Franck-Condon excited states of the PTCDI monomer were determined. The fluorescence spectrum shows a contribution from a broad fluorescence band at wavelengths longer than the monomer fluorescence band. This broad fluorescence is ascribed to the excimer-like fluorescence of PTCDI. The effects of the electric field on the fluorescence spectrum, known as the Stark fluorescence or electrofluorescence spectrum, were measured. Fluorescence quenching is observed in the presence of an external electric field. The change in the polarizability of the monomer fluorescence band is in good agreement with that of the electroabsorption spectrum. A larger change in the polarizability was observed for the excimer-like fluorescence band than that for the monomer band. This result is consistent with exciton delocalization between PTCDI molecules in the excimer-like state.

3.
RSC Adv ; 13(25): 17130-17142, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37293469

ABSTRACT

The first and foremost intent of our present study is to design a perovskite solar cell favorable for realistic applications with excellent efficiency by utilizing SCAPS-1D. To ensure this motive, the detection of a compatible electron transport layer (ETL) and hole transport layer (HTL) for the suggested mixed perovskite layer entitled FA0.85Cs0.15Pb (I0.85Br0.15)3 (MPL) was carried out, employing diver ETLs such as SnO2, PCBM, TiO2, ZnO, CdS, WO3 and WS2, and HTLs such as Spiro-OMeTAD, P3HT, CuO, Cu2O, CuI, and MoO3. The attained simulated results, especially for FTO/SnO2/FA0.85Cs0.15Pb (I0.85Br0.15)3/Spiro-OMeTAD/Au, have been authenticated by the theoretical and experimental data, which endorse our simulation process. From the detailed numerical analysis, WS2 and MoO3 were chosen as ETL and HTL, respectively, for designing the proposed novel structure of FA0.85Cs0.15Pb (I0.85Br0.15)3-based perovskite solar cells. With the inspection of several parameters such as variation of the thickness of FA0.85Cs0.15Pb (I0.85Br0.15)3, WS2, and MoO3 including different defect densities, the novel proposed structure has been optimized, and a noteworthy efficiency of 23.39% was achieved with the photovoltaic parameters of VOC = 1.07 V, JSC = 21.83 mA cm-2, and FF = 73.41%. The dark J-V analysis unraveled the reasons for the excellent photovoltaic parameters of our optimized structure. Furthermore, the scrutinizing of QE, C-V, Mott-Schottky plot, and the impact of the hysteresis of the optimized structure was executed for further investigation. Our overall investigation disclosed the fact that the proposed novel structure (FTO/WS2/FA0.85Cs0.15Pb (I0.85Br0.15)3/MoO3/Au) can be attested as a supreme structure for perovskite solar cells with greater efficiency as well as admissible for practical purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...