Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 827244, 2022.
Article in English | MEDLINE | ID: mdl-35479310

ABSTRACT

Dry eye disease (DED) is recognized as a chronic inflammatory condition with an increase in tear osmolarity and loss of tear film integrity. DED is often accompanied by adverse ocular symptoms which are more prevalent in females than males. The basis for ocular hyperalgesia in DED remains uncertain; however, both peripheral and central neural mechanisms are implicated. A model for aqueous deficient DED, exorbital gland excision, was used to determine if activation of the purinergic receptor subtype 7, P2X7R, expressed by non-neural cells in peripheral and central trigeminal nerve pathways, contributed to persistent ocular hyperalgesia. Densitometry of trigeminal brainstem sections revealed increases in P2X7R, the myeloid cell marker Iba1, and the inflammasome, NLRP3, of estradiol-treated DED females compared to estradiol-treated sham females, while expression in DED males and DED females not given estradiol displayed minor changes. No evidence of immune cell infiltration into the trigeminal brainstem was seen in DED rats; however, markers for microglia activation (Iba1) were increased in all groups. Isolated microglia expressed increased levels of P2X7R and P2X4R, IL-1ß (Ιnterleukin-1ß), NLRP3, and iNOS (nitric oxide synthase). Further, estradiol-treated DED females displayed greater increases in P2X7R, IL-1ß and NLRP3 expression compared to untreated DED females. Orbicularis oculi muscle activity (OOemg) evoked by ocular instillation of hypertonic saline (HS) was recorded as a surrogate measure of ocular hyperalgesia and was markedly enhanced in all DED groups compared to sham rats. Systemic minocycline reduced HS-evoked OOemg in all DED groups compared to sham rats. Local microinjection in the caudal trigeminal brainstem of an antagonist for P2X7R (A804598) greatly reduced HS-evoked OOemg activity in all DE groups, while responses in sham groups were not affected. Intra-trigeminal ganglion injection of siRNA for P2X7R significantly reduced HS-evoked OOemg activity in all DED groups, while evoked responses in sham animals were not affected. These results indicated that activation of P2X7R at central and peripheral sites in trigeminal pain pathways contributed to an increase in ocular hyperalgesia and microglia activation in DED males and females. Estrogen treatment in females further amplified ocular hyperalgesia and neuroimmune responses in this model for aqueous deficient DED.

2.
Article in English | MEDLINE | ID: mdl-30809134

ABSTRACT

Estrogen status is a significant risk factor in the development of temporomandibular joint disorders (TMD). Classically, estrogen status is thought to derive mainly from ovarian sources; however, it is well known that estradiol (E2) also is synthesized by neurons in the brain. This study tested the hypothesis that E2 is produced by neurons in trigeminal subnucleus caudalis (Vc), the principal site of termination for sensory afferents that supply the temporomandibular joint (TMJ), to modify evoked responses in a model of TMJ nociception in male and female rats. Intra-TMJ injection of the small fiber excitant, allyl isothiocyanate (AIC), increased the levels of E2 collected from microdialysis probes sites at Vc of ovariectomized (OvX) female rats, ipsilateral to the stimulus, whereas males displayed no change. Dialysate levels of E2 collected from probe sites in the contralateral Vc or cerebellum in OvX rats were not affected by TMJ stimulation. Reverse dialysis of anastrozole, an aromatase (ARO) inhibitor, via the probe reduced perfusate levels of E2 in Vc. Systemic administration of letrozole, a non-steroid ARO inhibitor, for 4 days prevented TMJ-evoked increases in masseter muscle electromyography (MMemg) activity. ARO-positive neurons were distributed mainly in superficial laminae (I-III) at Vc and cell counts revealed no significant difference between OvX and male rats. Intra-TMJ injection of AIC revealed similar numbers of ARO/Fos dual-labeled neurons in OvX and male rats. By contrast, the percentage of ARO neurons co-labeled for glutamic acid decarboxylase (GAD), the biosynthetic enzyme for GABA, was greater in OvX (35%) than male rats (14%). Few ARO-positive neurons were co-labeled for estrogen receptor alpha. These data indicate that E2 is secreted continuously by Vc neurons and that acute stimulation of TMJ nociceptors evokes further secretion in a sex-dependent manner. Reduced TMJ-evoked MMemg activity after ARO inhibition suggests that locally produced E2 by Vc neurons acts via paracrine mechanisms to modify TMJ nociception in female rats.

3.
Invest Ophthalmol Vis Sci ; 59(8): 3739-3746, 2018 07 02.
Article in English | MEDLINE | ID: mdl-30046815

ABSTRACT

Purpose: Persistent ocular surface pain occurs in moderate to severe dry eye disease (DE); however, the mechanisms that underlie this symptom remain uncertain. The aim of this study was to determine if the transient receptor potential vanilloid ion channels play a role in hypertonic saline (HS)-evoked corneal reflexes in a model for aqueous tear deficient DE. Methods: Eye wipe behavior and orbicularis oculi muscle activity (OOemg) were measured after ocular instillation of HS, capsaicin, or menthol 14 days after exorbital gland removal. Total RNA and protein were measured from anterior eye segment and trigeminal ganglia of sham and DE rats. Results: Eye wipe behavior was enhanced in DE rats after HS and capsaicin instillation, but not after menthol when compared to sham rats. DE rats displayed greater OOemg activity after HS and capsaicin, but not after menthol, compared to sham rats. HS-evoked OOemg activity was reduced by selective TRPV1 antagonists and by coapplication of capsaicin plus QX-314, a charged lidocaine derivative. Menthol did not affect OOemg activity; however, selective antagonism of TRPM8 reduced HS-evoked OOemg activity. TRPV1 protein levels were increased in anterior eye segment and trigeminal ganglion samples from DE rats, whereas TRPM8 levels were not affected. Conclusions: These results suggest that TRPV1 plays a significant role in mediating enhanced nocifensive behavior in DE, while TRPM8 may play a lesser role. Strategies to target specific transducer molecules on corneal nerves may prove beneficial as adjunct therapies in managing ocular pain in moderate to severe cases of DE.


Subject(s)
Dry Eye Syndromes/genetics , Gene Expression Regulation , RNA/genetics , TRPM Cation Channels/genetics , TRPV Cation Channels/genetics , Tears/metabolism , Animals , Disease Models, Animal , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Male , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley , TRPM Cation Channels/biosynthesis , TRPV Cation Channels/biosynthesis
4.
Neuroscience ; 349: 208-219, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28288901

ABSTRACT

Altered corneal reflex activity is a common feature of dry eye disease (DE). Trigeminal sensory nerves supply the ocular surface and terminate at the trigeminal interpolaris/caudalis (ViVc) transition and spinomedullary (VcC1) regions. Although both regions contribute to corneal reflexes, their role under dry eye conditions is not well defined. This study assessed the influence of local inhibitory and excitatory amino acid neurotransmission at the ViVc transition and VcC1 regions on hypertonic saline (HS) evoked orbicularis oculi muscle activity (OOemg) in urethane-anesthetized male rats after exorbital gland removal (DE). HS increased the magnitude of long-duration OOemg activity (OOemgL, >200ms) in DE compared to sham rats, while short-duration OOemg activity (OOemgS, <200ms) was similar for both groups. Inhibition of the ViVc transition by muscimol, a GABAA receptor agonist, greatly reduced HS-evoked OOemgL activity in DE rats, whereas injections at the VcC1 region had only minor effects in both groups. Blockade of GABAA receptors by bicuculline methiodide at the ViVc transition or VcC1 region increased HS-evoked OOemgL activity in DE rats. Blockade of N-methyl-D-aspartate (NMDA) receptors at either region reduced HS-evoked OOemgL activity in DE and sham rats. GABAαß3 receptor density was reduced at the ViVc transition, while NMDA receptor density was increased at both regions in DE rats. Loss of GABAergic inhibition at the ViVc transition coupled with enhanced NMDA excitatory amino acid neurotransmission at the ViVc transition and the VcC1 region likely contribute to altered corneal reflexes under dry eye conditions.


Subject(s)
Brain Stem/physiopathology , Dry Eye Syndromes/physiopathology , Trigeminal Nerve/physiology , Animals , Blinking/drug effects , Blinking/physiology , Brain Stem/drug effects , Brain Stem/metabolism , Disease Models, Animal , Dry Eye Syndromes/drug therapy , Male , N-Methylaspartate/metabolism , Neurons/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Saline Solution, Hypertonic/pharmacology , Synaptic Transmission/drug effects , Trigeminal Nerve/drug effects
5.
Pain ; 156(5): 942-950, 2015 May.
Article in English | MEDLINE | ID: mdl-25734990

ABSTRACT

Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline-evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.


Subject(s)
Brain Stem/physiopathology , Dry Eye Syndromes/physiopathology , Eye/physiopathology , Neural Pathways/physiopathology , Tears/metabolism , Trigeminal Nerve/physiopathology , Animals , Blinking , Cervical Cord/cytology , Cervical Cord/physiopathology , Disease Models, Animal , Electromyography , Eye/metabolism , Eyelids/physiopathology , Male , Muscle, Skeletal/physiopathology , Orbit/physiopathology , Rats , Rats, Sprague-Dawley
6.
Eur J Neurosci ; 40(4): 2619-27, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24904977

ABSTRACT

Orexin-A (OxA) is synthesized in posterior and lateral regions of the hypothalamus and contributes to homeostatic regulation of body functions including pain modulation. To determine if orexinergic mechanisms contribute to posterior hypothalamus (PH)-induced modulation of ocular input to subnucleus caudalis/upper cervical (Vc/C1) neurons, the orexin-1 receptor antagonist SB334867 was applied to the dorsal brainstem surface prior to PH disinhibition, by bicuculline methiodide, in male rats under isoflurane anesthesia. Ocular input to Vc/C1 units by bright light or hypertonic saline was markedly reduced by PH disinhibition and reversed completely by local Vc/C1 application of SB334867. OxA applied to the Vc/C1 surface mimicked the effects of PH disinhibition in a dose-dependent manner. OxA-induced inhibition was prevented by co-application of SB334867, but not by the orexin-2 receptor antagonist TCS Ox2 29. PH disinhibition and local OxA application also reduced the high threshold convergent cutaneous receptive field area of ocular units, suggesting widespread effects on somatic input to Vc/C1 ocular units. Vc/C1 application of OxA or SB334867 alone did not affect the background discharge of ocular units and suggested that the PH-OxA influence on ocular unit activity was not tonically active. Vc/C1 application of OxA or SB334867 alone also did not alter mean arterial pressure, whereas PH disinhibition evoked prompt and sustained increases. These results suggest that stimulus-evoked increases in PH outflow acts through OxA and orexin-1 receptors to alter the encoding properties of trigeminal brainstem neurons responsive to input from the ocular surface and deep tissues of the eye.


Subject(s)
Hypothalamus, Posterior/physiology , Neurons/physiology , Ocular Physiological Phenomena , Orexin Receptors/metabolism , Trigeminal Nuclei/physiology , Afferent Pathways/physiology , Animals , Male , Photic Stimulation , Physical Stimulation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...